
- - - - -- -- -.-. - - -- ---- - --- -- - - -- -- -- ------

DANIL H.WA'GNE,.' ASSOCIATES

ralioný.x o. tvlbeFUL)

PA ._: ENNS L ANl- BýSTýAVAILABLE OPY

S T A T E -------

M . o* P u b l i c 
¶ll 

r r

JýPptovo I



LEVELu'

INUMERICAL QPTIMIZATION OF §EARCH(11Ž FOR A MAOVINGTARGET,

Naval Analysis Programs
Office of NavalResearch

By
June 23, 1978 T1O OF nEDSte

Under Contract N N00014-76-C-069 ____jScott S./Brown_,

DAIE . ANEASSOICATEJ ? ..S
epobert P/Buemi

-

D D C Carl RHopkins'~

Technical Director and
Senior Vice President

Di~flT1~~ONST,¶M~~TT-~ Daniel H. WagnerL
Un derTiMUY ContractT No; N -President

I _ for.... -- .. " -vtshr

.jbutoy I~¶r:



ABSTRACT

SThe problem of computing an optimal search plan for a moving target is
addrn the searcher can distribute his effort as finely as he wishes.

'The majority of the report describes numerical techniques which have been
developed to compute optimal search plans for the very broad class of problems
in which the target's motion can be modeled by a discrete-time stochastic process
and the detection function is expotiential.

A very efficient algorithm is given to find optimal search plans when the
target's motion is modeled by a mixture of discrete time and space Markov
processes. A second algorithm is presented to solve the variation of this
problem that one encounters when the search effort at each time period is
restricted to be uniform over an arbitrary rectangular region. The latter is
intended to approximate the problem of choosing a sequence of sonobuoy fields
to maximize the probability of detecting a submarine. Examples show that one
can often find rectangular plans that are almost as effective as the optimal plan.
In addition to the above, an algorithm is presented to find optimal plans for
arbitrary discrete time target motion processes which can be modeled by Monte
Carlo simulation. All the algorithms have been programmed in FORTRAN and
run on a Prime 400 minicomputer. Examples of optimal plans calculated by
these algorithms are presented.

All the algorithms are based on a very general necessary and sufficient
condition for optimal search for a moving target which is proved in this report.
For discrete time and an exponential detection function this condition becomes:

For a search plan for a moving target to be optimal, it is necessary
and sufficient that at each time t it assign an allocation which is
optimal for the stationary target problem which one obtains at
time t by conditioning on failure to detect after t as well as before
t uzdeL the plan.

Algorithms are also offered for minimizing mean time to detect, for searches
involving non-exponential detection functions, and for survivor search problems.
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ABSTRACT

The pA oblem of computing an optimal search plan for a moving target is
addressed when the searcher can distribute his effort as finely as he wishes.

The majority of the report describes numerical techniques which have been
developed to compute optimal search plans for the very broad class of problems
in which the target'n motion can be modeled by a discrete-time stochastic process [
and the detection fanction is exponential.

A very efficient algorithm is given to find optimal search plans when the
target's motion is modeled by a mixture of discrete time and space Markov
processes. A second algorithm is presented to solve the variation of this
problem that one encounters when the search effort at each time period is
restricted to be uniform over an arbitrary rectangular region. The latter is
intended to approximate the problem of choosing a sequence of sonobuoy fields
to maximize the probability of detecting a submarine. Examples show that one
can often find rectangular plans that are almost as effective as the optimal plan.
In addition to the above, an algorithm is presented to find optimal plans for
arbitrary discrete time target motion processes which can be modeled by Monte
Carlo simulation. All the algorithms have been programmed in FORTRAN and
run on a Prime 400 minicomputer. Examples of optimal plans calculated by
these algorithms are presented.

All the algorithms are based on a very general necessary and sufficient
condition for optimal search for a moving target which Is proved In this report.
For discrete time and an exponential detection function this condition becomes!

For a search plan for a moving target to be optimal, it is necessary
and sufficient that at each time t it assign an allocation which is
optimal for the stationary target problem which one obtains at
time t by conditioning on failure to detect after t as well as before
i under the plan.

Algorithms are also offered for minimizing mean time to detect, for searches
involving non-exponential detection functions, and for survivor search problems.
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S-PREFACE

This is a report by Daniel H. Wagner, Associates to the Naval Analysis Divi-
sion of the Office of Naval Research (Code 431) on work performed under ONR

jContract No. N00014-76-C-0696. This report summarizes the remarkable pro-
gress made since the fall of 1976 in the computation of optimal search plans for
moving targets.

We would like to express our appreciation for the excellent cooperation and
support that has been given to this work by Mr. J. Randolph Simpson and CDR

SRonald James of ONR (Code 431).

In reference [a], S. S. Brown made the key observation that the necessary
4 and sufficient conditions for optimal search for a target moving in discrete space

and time with an exponential detection function could be stated in terms of solving
a sequence of stationary targel problems. In each of these stationary searches
the target position distributions are conditioned on non-success of future as well
as past search under the plan. This observation allowed him to produce a very
efficient algorithm for finding optimal search plans for targets whose motion
can be modeled by a mixture of discrete time and space Markov processes.
Chapter I1 of this report is based on reference [b], which Is a revised version
of Brown's work reported in reference [a]. The work on rectangular search
plans discussed in Chapter III is based on work by R. P. Buemi reported in
references [-I and (d]. This work makes use of many of the ideas of Brown

j discussed in Chapter I1.

In reference (e], L. D. Stone showed that the condition found by Brown holds
when the search space is continuous as well as discrete. This is the basic con-
dition given in Chapter I. In addition he found a generalization of the condition
for non-exponential detection functions and continuous time, again involving
conditioning upon future as well as past search. This allowed a unified state-

ment of the necessary and sufficient conditions for a very broad class of moving
target problems for any combination of discrete or continuous space and discrete
or continuous time. This statement is given In Chapter VI.

Using this condition, Stone (reference [f]) devised an algorithm to find optimal
search plans when the detection function is exponential and the target motion can
be modeled by an arbitrary discrete-time Monte Carlo simulation. This algorithm
was implemented by C. R. Hopkins (see reference (g]) on a Prime 400. Hopkins'j |program was used to produce the examples in Chapter IV.

I ii



SUMMARY

This report summarizes the recent progress that has been made in finding optimal

se. -ch pians for moving targets.

In the recent past, our ability to compute optimal search plans for detecting

r 'moving targets was limited to special situations such as those involving target motion

that is conditionally deterministic with a factorable Jacobian or that is two-celled

Markovian (see Chapters 8 and 9 of reference [hl). Although the target motion in some

Naval applications can be modeled by the factorable conditionally deterministic

motion, most cannot, and Markovian motion in any small number of cells is not a

realistic motion model for most operational situations.

Since the fall of 1976 we have developed optimization techniques which allow one

to find optimal allocations for multiscenarlo Markovian motions in discrete space andI time. These multiscenar-Lo Markovian motions are general enough to model a

"wide range of target motions. In addition, we have developed an optimization program

Monte Carlo simulation. This latter program can be coupled with computer assisted

search programs such as COMPASS, MEDSEARCH, or TARDIST which are now being used on a

regular basis to provide search planning advice for actual submarine searches In the

Mediterranean and Atlantic. The program designed for arbitrary discrete time target

Itit



motions is very general; however, it pays the price of being slower to run than the

program designed only for multiscenario Markovian motions. Programs suoh as

COMSUBPAC's ASP and SASP could be modified to incorporate the basic optimization

algorithm described in the third section below.

The class of search problems that can be solved by these programs is very broad

but there are two important restrictions. First the detection function must be

exponential, and second the searcher is assumed to have the ability to spread his

effort over large areas in a single time period. Thus, the allocations obtained from

these programs would not be appropriate for a submarine searching for a submarine

but would be more reasonable for a VP aircraft -.'ching for a submarine. Even

in the latter case, the optimal allocations of effort are probably too complicated for

operational use, although they can suggest the general nature of the plan to be followed.

In Chapter III of this report we address this problem by producing an algorithm that

finds near-optimal plans which are restricted to allocate their effort uniformly over

a single rectangle during each time period. In fact, the methods described in Chapter

III have been adapted by COMPATWINGSPAC for use in VP search planning.

In the remainder of this summary, we describe the basic search problem and

outline the results obtained for this problem.

Basic Problem

The target's motion is represented by a stochastic process

X = {Xt; t - 1, ... , T}

where Xt is a random variable which gives the target's position at time t. The distri-

bution of Xt is simply the probability distribution of the target's location at time t.

iv



In this report, two basic types of target motion processes are considered.

The first type, considered in Chapters II and Illis the multi-scenario Markovian

motion in discrete space and time. The second type is an arbitrary discrete time

target motion process which is represented by a large but finite number of sample

paths from a Monte Carlo simulation of the process. This type is considered primarily

in Chapter IV. This second type of motion is very general in character; it need not be

Markovian and can take place in a discrete or continuous space.

For most of the report, we assume that a grid has been established on the search

space which is two-dimensional and that search effort must be applied uniformly within

a given cell of the grid, although effort may vary from cell to cell. Let J denote the

set of cells in the grid and

Pi:t(J) cX cell J} for jE J, tl ... T,
t t

AU) = area of jth cell for JE J.
-t

Although we impose this grid structure, thp '-rget motion may take place in either

discrete or continuous space. We assume that the detection function is exponential, I. e.,

t -exp - WO)z

is the probability of detecting the target with z amount of effort placed in the )th cell

I given the target is in that cell. Here, WO) is the sweep width or effectiveness

j parameter for search in cell J.

A search plan is described by a nonnegative function * of space and time such

that

Iv ..-
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@{j,t) = effort placed in cell 3 at time t for JE J, t=1, ... , T.

The amount of effort available is constrained so that

m(t) = the effort availabe at time t.

We define %IP (m) to be the class of search plans b such that

2 0 t) = r (t) for t =- 1, .. , T .

j JE

Let E denote expectation taken over the sample paths of the process X. For

any search plan 4 the probability, IT? ] of detecting the target by time T is given by

PT[ = E -exp(- Z& W(Xt)O(Xt t)/A(Xt) . (S-
t=l 1

The basic search problem considered in this report is to find a plan 0* E *I, (m) that

maximizes the probability of detecting the target by time T over all plans in the

class 'I'(m). Mathematically stated, we seek 0" E •I,(m) such that

Pr[* = max{P Pi[0]:0 E ,*(M)}. (S-2) ••

Such a plan is called T-optimal within 't,(m).

Basic Necessary and Sufficient Conditions

The main optimization algorithms discussed in this report are based on the

following necessary and sufficient condition for a search plan to be T-optimal within

' (m). The form of the condition given here applies to any discrete time target motion

process and exponential detection function. For any search plan ¢, let

vi



= Pr target is in cell j failure to detect at all times
at time t other than t using plan • "

Note that gt(J, t) is conditioned on failure to detect both before and after time t.

BASIC CONDITION: In order that * 4'- (m) be T-optimal. it is

necessary and sufficient that the allocation 0 *(-, t) ia~ximize the

S~~~probability of detecting a stati~aaar tariet with distrtbution g•.t -

and effort m(tj for t = .1 T.

Description of the Basic Algorithm

The algorithms for finding T-optimal plans 'perate in the following manner.

Beginning at time t = 1, they find an optimal allocation of M(1) effort for the initial

target distribution. For times t 2, .... T, they calculate the posterior target

location distribution at time t given failure to detect at all previous times and

allocate ne(t) effort in a manner that would be optimal for that stationary target

problei.i. The plan resulting from the first pass is the myopic or incrementally

optimal plan.

Subsequent passes operate in the following manner for t 1 ... , T. The

algorithms compute g., t) where p represents the most recent allocation obtained.

They then reallocate the effort at time t to be optimal for the distribution g (.,t) and

change 0 to reflect that reallocation.

By performing enuugh passes, one can come as close to the optimal search plan

as he wishes.

iii
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Multi-Scenario Markovian Motion

Chapter I1 considers the problem of finding T-optimal plans when the target

motion is described by a mixture of discrete time and spae Markov chains. Each

chain represents a possible target motion scenario. Suppose there are N scenarios.

Then for n = 1, ... , N, the userm•ay specify a Markov ehalnX"3- = t - 1, ... , T}

th
to model the motion in that scenario. The n rcenario is given weight a where

E N 01 = 1. if p) is the probability that the target is located in cell j at time t
n~=1 . Ifn th

under scenario n, then the overall probability of the target being located in cell J at f
time t is

N

.ýtO) = ; anPn0).n=1 n

The target motion assumptions are translated into transition functions for the

Markov chains. These functions may be time dependent. One can specify the target's

initial distribution, I. e., his distrtbution at time 1, and constrain the target to have

any desired distributions at any subset of the remaining times { 2,..., T}. This

feature may be used to model geographic constraints, i.e., if the target distribution

must squeeze down to funnel through a strait, one can model this by using the

constraints.

As well as describing the algorithm used to compute the optimal allocation,

Chapter II gives examples of optimal plans calculated by the program that implements

the algorithm on a Prime 400 mini-computer.

One of the examples conhidered is a constrained Markovian fan. The target's

initial distribution is circular normal with a standard deviation of 6 miles. It is

viii
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centered in the middle of cell (0. 0) and truncated by a 15 mile by 15 mile square
!A

whose center coincides with the center of the distribution. The orientation of the

square matches that of the grid. The target's motion is single scenario Markovian

with the target choosing its course uniformly from 1800 to 2100 and its speed between

6 and 12 kts with a beat speed of 9 kts, which is given a weight of 1. 5; the speed

distribution is truncated triangular as shown In Figure S-1. Independent draws are

made from these distributions each hour. At hour 8 the target is constrained to have

a truncated normal distribution which is equal to the initial one translated 60 miles

south. If the constraint at hour 8 were removed, this type of problem would be

similar to that faced by a VP aircraft trying to redetect a submarine on which contact

has been recently lost. Example 1 of Chaptor II presents such a case.

Table S-1 shows how the target density changes over the first four hours in the

absence of search. The target moves southward and diffuses from its original

distribution. During the last four hours the target density is a mirror Image of the

first four hours. It still moves southward but converges back to a truncated normal

distribution.

Ninety units of search effort are available each hour. Table S-2 compares the

detection probabilities achieved by the myopic plan at the end of each hour to those

achieved by plans which are optimal for 2, 4, 6, and 8 hours. Observe that no optimal

plan significantly outperforms the myopic plan. The myopic plan remains near optimal

for many searches although Example 3 in Chapter II and Example 3 in Chapter IV

give situations in which the optimal plan is significantly better than the myopic.

* Table S-3 shows the optimal plan for 8 hours. Again only the tables for the first four

I
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FIGURE S-i

TR.IANGULAR DISTRPBUTION ON TARGET SPEED

Note: A weight of 1. 5 means that the probability density at the best speed is 1. 5

times that at the minimum and maximum speeds which have equal probability

densities.

Sweight| I

w4I

0 minimum best maximum
speed speed speed

Speed
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TABLE S-I

"TARGET DENSITY FOQ THE CONSTRAINED MARKOVIAN FAH

Note: (1) Entries represent thousandths of a target.

(2) Cels are 3 mi x 3 mi.

Hour 1
N

2 10 -1-2
21 23 34 38 34 23
11 34 49 56 49 34
01 38 56 63 56 38 4

-11 34 49 56 49 34S-2] 23 34 38 34 23 "

Hour 2

4 3 2 1 0 -1 -2 -3 -4 i

O.j 0 1 3 7 7 7 3 1 0
-1J 0 6 17 31 38 31 17 6 0
-21 1 9 27 50 58 50 27 9 1
-31 1 10 30 55 64 55 30 10 1
-41 1 9 25 47 54 47 25 9 1 -
-5] 0 4 12 23 26 23 12 4 0
-6] 0 0 2 3 3 3 2 0 0

Hour 3

4 3 2 1 0 -1 -2 -3 -4

-21 0 0 1 1 1 1 1 0 0
-31 0 2 5 9 11 9 5 2 0
-4] 2 7 18 31 37 31 18 7 2
-5] 2 11 29 49 59 49 29 11 2
"-61 3 12 31 53 63 53 31 12 3
-7] 2 9 24 40 48 40 24 9 2
-8] 1 4 10 17 21 17 10 4 1
-9] 0 1 2 3 3 3 2 1 0 -

-i
xi 'I



S~ TABLE S-1- notinued)

Hour 4

6 4 3 2 1 0 -1 -2 -3 -4 -5

S-51 0 0 0 1 2 2 2 1 0 0 0
-61 0 1 3 7 12 14 12 7 3 1 0
-7] 0 2 8 19 33 39 33 19 8 2 0
-81 0 3 12 30 50 60 50 30 12 3 0
-91 0 3 12 31 52 61 52 31. 12 3 0

-101 0 2 9 21 36 43 36 21 9 2 0
-111 0 -1 3 8 14 17 14 8 3 1 0
-121 0 0 1 1 2 3 2 1 1 0 0

Hours 5-8 are a mirror reflection of hours 1-4.

TABLE S-2

DETECTION PROBABILITIES FOR THIE CONSTRAINED MA.RKOVIAN FAN

Number Myopic Plan Which to Optimal for
Of Hours Plan 2 hours 4 hours 6 hours 8 hours

1 .357 2 346 .324 .313 .311
2 •555 0560 .549 .141 .539
3 .672 .679 .673 .672
4 .750 .762 .758 .757

5 .807 .818 .8176 .852 .862 .862
7 .889 .898
8 .926 .932

xi!
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TABLE S-3

SEARCH PLANS FOR EXAMPLE 2

2
Notes: (1) Entries represent thousandths of a unit of search density (effort/mi ).

(2) Cells are 3 mi x 3 mi.

Optimal Plan for 8 Hours

N Hour 1

2 1 0 -1 -2

21 448 563 568 563 448
11 423 361 263 361 423
01 392 268 165 268 392

-1] 403 338 262 338 403
-2) 416 508 502 508 416

Hour 2

4 . 2 _1. 0 -1 -2 -3 -4

O1 0 0 0 0 0 0 0 0 0
-11 0 0 101 485 532 485 101 0 0
-2] 0 0 338 605 616 605 338 0 0
-31 0 0 363 602 617 602 363 0 0
-4) 0 0 312 583 599 583 312 0 0

T -5i 0 0 0 268 323 268 0 0 0
-6] 0 0 0 0 0 0 0 0 0

Hour 3

4 3 2 1 0 -1 -2-3 -4

-21 0 0 0 0 0 0 0 0 0
-31 0 0 0 0 0 0 0 0 0

-41 0 0 257 449 484 449 257 0 0
-51 0 0 424 546 568 546 424 0 0

4 -61 0 0 435 553 580 553 435 0 0
I -7] 0 0 363 518 544 518 363 0 0

-8] 0 0 0 223 285 223 0 0 0
-9] 0 0 0 0 0 0 0 0 0

xiii
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"Hour 4

-5] 0 0 0 0 0 0 0 0 0 0 0

-63 0 0 0 0 52 121 52 0 0 0 0

-73 0 0 0 502 430 452 430 302 0 0 0

-81 0 0 74 496 503 523 503 438 74 0 0

-91 0 0 84 441 512 534 512 441 84 0 0

-10] 0 0 0 343 469 492 469 343 U 0 0

-11] 0 0 0 0 173 240 173 0 0 0 0

-12] 0 0 0 0 0 0 0 0 0 0 0

Hours 5-8 are a mirror refneCt/on of hoMrs 1-4.

Myopic Plan

Hour I

2. 1 0 -1 -2

21 0 256 381 266 0
11 256 631 756 631 256

01 381 756 881 756 381

-1] 256 631 756 631 256

-21 0 258 381 258 0

Hours 2-3 not showD.

Hour 4

-1 0 -5

A5 0 0 0 0 0 0 0 0 0 0 0

-61 0 0 0 0 0 26 0 0 0 0 0

-71 0 0 0 242 505 556 505 242 0 0 0

-81 0 0 0 402 592 614 592 402 0 0 0

-9] 0 0 0 401 590 607 190 401 0 0 0

-10] 0 0 0 295 506 626 566 295 0 0 0

-11] 0 0 0 0 92 205 92 0 0 0 0

-12] 0 0 0 0 0 0  0 0 0 0 0

Hours 6-8 not shown.

xlv



hours are displayed since the last four hours are a mirror image of the first four

" j] hours. At hour I the optimal plan uses most of its effort to surround the target rather

than searching the highest probability cells as the myopic plan does (see the end of

Table S-3). By hour 4, however, the optimal plan concentrates its effort in the

center of the target distribution.

The conclusion that myopic plans are almost as good as optimal plans in many

situations has important operational implications. In general, the optimal plan for

time T + T' is not a continuation of the optimal plan for time T. Thus if one searches

optimally for four hours, one cannot extend this to an optimal search for eight hours.

Optimal plans are time-horizon dependent. However, the myopic plan, which simply

maximizes the increase of detection probability at each time increment, can always

be continued. In addition, the optimal plans typically pay a penalty in probability of

detection at the early hours in order to maximize that probability at time T. With a

myopic plan no such penalty is incurred and often the resulting probability of detection

at the end of any amount of time is close to optimal. Thus when the myopic plan is

close to optimal, as it is in many of the examples calculated for this report, the

.myopic plan is a good one to use for operational purposes.

Even the myopic plans may be difficult to implement operationally because they

often call for fine distributions of effort over large areas. Chapter III considers

¶ °search plans for multi-scenario target motion when at each time period one is

restricted to allocating the available effort uniformly over a rectangle. The size,

location, and orientation of the rectangle is chosen by the search planner. This

restriction i& intended to correspond to allocating sonobuoys uniformly in an area.

* I xvI
. I
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An algort!'%.n was developed to find good search rectangles, and it has been pro-

grammed on a Prime 400 mini-computer. Chapter HI presents some examples of

rectangle plans found by this algorithm. In particular, plans were computed for the

above example. Table B-4 shows the rectangles obtained for hours 1 through 4.

that obtained by the myopic plan and the optimal plan for eight hours obtained above.

Observe that the probability of detection resulting from the rectangular plan is

remarkably close to both the optimal plan and the myopic plan.

Arbitrary Discrete Time Target Motion

In Chapter IV we outline a method for finding T-optimal search plans for any

discrete time target motion process that can be represented by a Monte Carlo simulation.

Observe that this class of target motions is very broad. For example, the target is

not eestricted to move among a set of cells as is usually the case when one deals with

Markov chain models of target motion. The motion process need not be Markovian

or even a mixture of Markov processes. The process can be Gaussian, a constrained

diffusion, or a random movement through a network. The program developed to

perform the optimization for this class of motion processes can be coupled with the

Monte Carlo computer assisted search programs such as COMPASS or MEDSEARCH to

find optimal allocations of search effort over any time interval of interest for any

target motion processes produced by these programs. In fact, the COMPASS programs

were used to generate the target motion process for the examples in Chapter IV.

The accuracy of the optimization will be related to the accuracy with which the

Monte Carlo simulation represents the target motion process. The algorithm considers

xvi
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TABLE S-4 c onttaued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 2

1. 3 7 "7 7 3 1 1

0 6 1"7 31 36 31 17 6 0
-2 * * * * * * *

1 9 2' 50 5• 50 2'" 9 1

-3 * S

1 10 30 55 64 55 30 10 1
-4. . 1 0 0

1 9 25 47 54 47 25 9 1

-5 - -. v 9

0 4 122 2 12 4 0

0 0 2 3 3 3 2 0 0

4 3 2 1 0 -1 -2 -3 -4 -5

*TIME 2 PROBABILITY UF NOLNDETECTION * .639 (Cumulative)

xviii
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TABLE S-4 LcontinluodL)

PROBABILITY MAP AND RECTANGLE FOR HOUR 3

-2 ~ 2 1 1 C

-3 1 3 3

-4*
2 9 t9 2

4 15 31 44 45 44 31 15 4

4 lo 33 47 48 47 33 16 4

3 12 2o 36 40' 3b 26 12 3

5 12 l• 21 19 12 5 1

"Vi 1 2 4 4 4 2 1 0I; I
4 3 2 1 • -1 -2 -3 -4 -5 1

,.I . ,1 3 11 v,., I LII Y CI NON1I.',TF:CTION .660 (cmulatfve)

4
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TABLE 8-4 .{con t inuedj.

PROBABILITY MAP AND RECTANGLE FOR HOUR 4

- 1 2 3 3 3 2 1 0 (

0 1 5 10 15 11 15 10 5 1 0

1 4 11 23 32 36 32 23 11 4 1

1 5 15 29 38 42 38 29 15 5 1

1 5 15 29 3*7 41 3' 29 15 5 1

1 4 11 23 32 36 32 23 11 4 1

c 2 5 12 18 21 18 12 5 2 a

-12 . . . . . . . . . . . "
0 0 1 2 4 5 4 2 1 63-= "

-13
5 4 3 2 1 -1-2 -3 -4 -5 -6

EIIL 4 P4•kABILITY OF vNONDETECTIO1\ - .744 (Cumhltve)

.xI
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TABLE S-5

. DETECTION PROBABILITIES FOR THE CONSTRAINED MARKOVIAN FAN
-A

Probability of Detection for

8-Interval

Time Rectangular Plan Myopic Plan, .tmal

1 .329 .357 .311

2 .539 .555 .540

3 .660 .672 .672

4 .744 .750 .757

5 .800 .807 .816

6 .846 .852 .862

7 .884 .889 .898

8 .922 .926 .932

xxi



only search allocations that, during one time period, are constant within the clls of

a grid chosen by the user. Observe that this is only a restriction on the class of

allocations which are considered and is not equivalent to assuming that the target

motion takes place in discrete space. The algorithm described in Chapter IV is more

general than the one in Chapter II for mixtures of Markovian processes. However, it

does in effect optimize over a sample of the target motion process whereas the

algorithm in Chapter 11 treats the target motion exactly. In addition computing time

for the more general algorithm is longer than that for a mixture of Markov chains.

So, in the case where a mixture of disorete time and space Markov chains provides a

good representation of the target's motion, the algorithm in Chapter 11 will be more

accurate and faster.

Three examples of optimal allocations obtained by the general discrete time

optimizer are given in Chapter IV. One of these examples involves a fleeing target

problem similar to the one described in reference Li 1, page 17. The target's initial

distribution is circular normal with standard deviation 20 miles in any direction. The

target is assumed to be traveling at 10 kts along a constant course which is chosen

'tom a uniform distribution on [00, 360 0 ]. Reference [i ) was able to compute the target

location distribution for this problem as a function of time when no search effort is

applied. However, optimal plans for this problem were not found. Tables IV-1 and

IV-2 show the myopic and optimal plans for seven hours of search when the searcher

begins his search at hour 4. The optimal allocation concentrates its effort much more

heavily in the center of distribution at hour 4 than the myopic plan. Comparing the

optimal plan to the myopic for the remaining time intervals, one sees that the optimal

plan generally concentrates its effort more than the myopic plan. Also it appears that
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at hour 5 the optimal plan chooses to concentrate its search more heavily on the

eastern side of the distribution and then to make up for that by concentrating its effort

on the western side at hours 6 and 7.

Although the myopic plan and optimal plan are qualitatively different, the resulting

F probabilities of detection as shown in Table IV-3 are strikingly close. This feature

held true for several variations on this fleeing target problem; in particular, when the

initial distribution was uniform over a 60 mile by 60 mile rectangle and when the

target's speed was allowed to be drawn from a uniform distribution over 6-14 kts.

Example 3 of Chapter IV shows a significant improvement in the optimal plan over

the myopic one. This example involves multiscenario target motion and regions of4

varying detection capability. The detection probabilities for the optimal and myopic

plans are shown in Table IV-9. The optimal has 19% better probability of detection

than the myopic (i.e., . 58 versus . 48 for four hours of search).

Algorithms for Related Problems

The method of designing the algorithms in Chapters II and IV can be used with

some variations on a wide range of optimal search problems. In Chapter V we outline

algorithms which can be used to find optimal plans when the detection function is not

exponential, to find plans which minimize mean time to complete a search, and to

find optimal allocations of effort when there is a constraint on total effozt available

but not on the rate at which effort may be applied. We also give an algorithm for

maximizing the probability of finding a target alive when the target has a stochastic

lifetime which varies with location.
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These proposed algorithms have not been programmed or tested. They should

"i : be thought of as first approaches to solving these problems, and are included

i simply to illustrate the methods which can be used to attack these problems.

General Necessary and Sufficient Cdions

Chapter VI finds necessary and sufficient conditions for a search plan to maximize

the probability of detecting a moving target by time T under constraints on the rate

at which search effort may be applied. These conditions apply to a broad class of

moving target problems in continuous or discrete time and in a continuous or discrete

space. Many previous results concerning necessary and sufficient conditions for

moving target problems art special cases of these results. In particular the basic

conditIon stated in the beginning of this summary is a special case of the results in

Chapter VI.

4.
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INTRODUCTION

II

Since the fail of 1976, remarkable progress has been made in our ability to

compute optimal search plans for moving targets. This report summarizes that

J progress.

Prior to the work reported here there were few situe.tions in which one could

find optimal search plans for moving targets. These situations typically involved

two-celled Markovian motion or special types of conditionally deterministic target

motion; see Chapters 8 and 9 of reference (h). In this report we discuss teohniques

which allow us to find optimal search plans whenever the target motion is modeled

by a discrete-time stochastic process in either continuous or discrete space and

a fixed amount of effort must be applied at each time period. It is assumed that at

each time period the search effort may be distributed as finely as desired over

the search space. The optimization techniques presented in this report are primarily

limited to exponential detection functions.

Observe that the class of allowable target motions is essentially unrestricted

except that a discrete-time motion model must be used. In addition to covering

Markovian motion, the class encompasses any of the Monte Carlo target motion

i processes used by the Navy's computer-assisted search systems such as COMPASS,

' I
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MEDSEARCH, or TARDIST, see references U] and (k].

S~The assumption that the searcher can distribute his effort as finely as he wishes

is an important restrictiun. It effectively prevents us from using these results to

plan the search of one sut marine for another. However, the results do apply to

searches where the searcLer can move much faster than the target, e.g., patrol

aircraft searching for a submarine with sonobuoys or aircraft searching visually

for a person adrift in a i.fe raft.

The problem of optimal search for a submarine by patrol aircraft motivated

much of the work presented in this report. Using the algorithms presented here,

one can provide good advice on search allocation for a wide range of problems involving

VP aircraft searching for submarines with sonobuoys. In fact the techniques in Chapter MI

have already been adapted by COMPATWINGSPAC for use in search planning.

Our approach to solving the optimal search problem considered here i6 to find

a set of necessary and sufficient conditions for an optimal plan. We then design an

algorithm to find plans which satisfy these conditions and are therefore optimal.

For three variations on the basic search problem described in the first section, •'? nave

developed and implemented algorithms for a Prime 400 minicomputer. In Chapters l,

mI, and IV we illustrate the type and complexity of problems that these algorithms

can solve.

In the first section of this chapter we describe the basic class of moving target

problems that we will consider. In the second section we present the necessary

and sufficient conditions which form the basis of the algorithms given in Chapters U

and IV. These conditions have a very interesting and useful interpretation in terms

of optimal search for stationary targets which is discussed in the second section. The

third section describes the algorithm used to compute optimal search plans.

-2-



]asic Search Problem

In this section we give a description of the basic search problem which is

considered throughout most of this report.

Target motion. The target's motion is represented by a stochastic process

X = { Xt; t - 1, ... , T} where Xt is a random variable which gives the target's

position* at time t. The marginal distribution of Xt is simply the probability

distribution for the target's location at time t.

In a typical search problem, one is given the target's initial probability

distribution and a stochastic description of the target's motion. These two can

be combined in the manner discussed in Chapters II and IV to produce the stochastic

process which represents all the possible target paths over time t = 1, ... T.

As an example one might have a bivariate normal distribution for the target's

location at time t = 1. Such a distribution could be obtained from a long range

sensor with poor localization capabilities. From geographical considerations

oae might be able to deduce that the target's course lies between bearings a1 and

0 and from operational considerations that the submarine is traveling with a

speed between v and v2 . Assume that the probability distributions on target's1 2

cource and speed are uniform over the above limits. In addition one could assume

that the target, having chosen a heading and speed from the above distribution,

persists in that course for a random time which is exponentially distributed with

specified mean 1r At the end of this time, the target makes a new and independent

draw from the above distributions to determine its new course and speed.

S We understand Xt to be either a point in the plan or a cell index. It will be
clear from context which is the case.

II
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I

Using the COMPASS or MEDSEARCH programs, this type of target motion is

represented by producing a large number of target paths (see reference Uj j) in a

Monte Carlo fashion. From these paths, the programs can generate a sequence

of distributions for the location of the target at a sequence of times t - 1, T,

chosen by the user. The target distribution at time t is then the distribution of X
tt

and the collection of target paths represents the stochastic process X = {Xt, t = 1, ... , T}

Alternatively this type of target motion can be modeled by using a Markov chain approach

as described in Chapter I1. The target motion process X then becomes a Markov

chain. The target motion models considered in this report and the algorithmsI discussed below are capable of handling both of these possibilities and indeed a

much wider range of target motions. In fact the algorithm in Chapter IV will find

optimal allocations for any target motion process which can be represented by a

Monte Carlo simulation.

Search grid. For most of the report, we shall assume that a grid has been
7

established on the search space which is two dimensional and that we must allocate

our effort uniformly within a given cell of the grid, although effort may vary from

cell to cell. Let J denote the set of cells In the grid, and let

ptj) = Pr{ Xt in cell J}

= Pr target is in cell Jat timet} for JcJ, t =1,...,T,

and

AU) =area of jth cell, for JeJ.

-4-



FIGURE I-I

K, SEARCH GRID

-c -l-

P-0) c Prf target is in c-ll J at time t}

A 0) - area of jnth ce

J fcollection of cells in the grid

Note: The search grid need not be uniform.
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Although we impose this grid structure. the target motion may take place in either

discrete or continuous space.

Class of search plans considered. A search plan is described by a nonnegative

function 0 of time and space such that

0 (j,t) = effort placed in cell j at time t for J e T, t =1,..., T.

We assume that the amount of effort available is constrained so that

m(t) = total effort available at time t.

We restrict ourselves to search plans 0 such that

Z 4(J.t) =m(t) fort = 1,...,T. (I-I)
JfJ

The class of plans which satisfy (I-i) is called t(m).

Detection function. Let w indicate a sample target path drawn from the

stochastic process {Xt; t = 1, .... , T} . We shall let X t(w) be the target's position

(i.e., cell) at time t on this sample path. Suppose that 0 it a search plan. Then

the probability of detecting the target given it follows path w is assumed to be

1- exp ztW(Xt(w)) (Xt(w), t) /A(XtM)) (1-2)

where for J i J, WO) is the sweep width or effectiveness parameter for search in cell J.

That is, we are assuming that the detection function is exponential and that detection

of the target during one time period is independent of detection during any disjoint time

period. In Chapter V, first section, we treat the case where the probability of

detection on the path w is given by b(z ), where z is the effort density which accumulates
-6- W



on the target along the path w and b is a regular detection function, i. ., b has

a positive continuous and strictly decreasing derivative. When b is not exponential,

detection is not independent from time period to time period.

1Let E denote expectation over the sample paths of f Xt, t 1,'..., T Suppressing

the dependence of X on w, we can write the overall probability of detection by time TI t
as

P 1 -]E exp (- W(x) 0 (Xt, t)/A(X (1-3)

for any search plan 0.

Problem statement. We seek a plan 0* which satisfies the effort constraint

(I-1) and maximizes the probability of detection by time T within the class of plans

satisfying (1-1). Mathematically stated, we seek 4 *e *(m) such that

P T[O *] = 11ax{ PT[ 1 1 :' E *(m)} . (1-4)

Such a plan is called T-optimal within *(m).

Basic Necessary and Sufficient Conditions

In this section we present the basic necessary and sufficient conditions which

we shall use in constructing the algorithms discussed In this report. The form

of the conditions given here applies to discrete-time target motion processes

and exponential detection functions. A generalization of these conditions to include

Scontinuous time motion processes and non-exponential detection functions is

stated and proved in Chapter VI.

-7-
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In order to state these conditions we let V' denote a plan which is T-opttmal

within t(m) and let

SPr target is in cell jlfailure to detect at all timesa for jEJ, t-., T. (1-4)

Sg•.(J,t)=-at timett other than tusing plan o, ,

Observe that the conditioning on failure in (1-4) includes search which takes place

after time t as well as before. Let E deote expectation conditioned on the target

being in cell j at time t. Then there is a constant K(t) for t= 1, ... , T such that

90 (j, 1 4 K-Pt'-- E t [e(-, W(X 0 •*(Xtt)/A (X for JeJ, t=l,...T.

The constant K(t) is simply the normalizing constant required so that

EJgo'*(t) I1 fort=1,...,T.

BASIC CONDITION. In order that 4* c 4I,(m) be T-optirnal it is necessary

and sufficient that the allocation 0 , t) maximize the probability of

detecting a stationary target with distribution g, t) and effort re(t)

£ for t=1, ... , T.

To show that If 0 * is T-optimal within *(m), then it must satisfy the basic

condition, we reason as follows: We may write the probability of failing to detect

the target by time T using 0 as

A-8-



T
1-P i0i=E ep(1 -P • * = E t F• W (X t) •* IX ,,t)/A (X )

X "O) [e -AW(X)O*(J , I)/A() e-()*0t/

: o = ~KMt i~ g2; J~)e.

One can see from (1-5) that the failure probability I-PT [*0 for the search over

time [0, TJ is proportional to the failure probability resulting from applying the

allocation 0 *.,t) specified by the optimal plan for time t to the stationary target

problem with target distribution g, *(., t). Thus if 0 *(., t) did not minimize failure

probability (i.e., maximize detection probability) for a stationary target with this

distribution under the effort constraint re(t), one could find an allocation f such

that ZjJ fo) = w(t) and

M~ -•,j~WOJ)If0) /A () < j g.te-WO) 0*(J,t)/AJ).j OE J 90*, e ete

Then one could define

0 *(, S) if s t

f(J) if s= t.

Clearly the search plan ý is a member of *(m) and PT14 ) > PT[#*J which contradicts

Sthe optimality of 0 *. Thus 0 *(. .t) must maximize the probability of detection for

a stationary target with distribution g•,(. t) and effort m(t). This proves the

necessity of the basic condition. A proof of the sufficiency is given in Chapter VI.

11
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Description of Basic Algorithm

Most of the algorithms described in this report make use of the basic condition

to find a sequence of search plans which converge to the optimal plan. They usually

proceed as follows.

First iteration. For time t = 1, find the optimal allocation of search effort m(t)

for the initial target location distribution p , Set 0 1, 1) equal to this allocation

and compute gl, the posterior target distribution attime 2 given failure to detect

the target at time 1. Set 0 1(.,2) equal to the optimal allocation of mr(l) effort for
1 1.

the distribution g2 . Suppose that we have found 4 ,s) for s = 1,... ,t-l. Then we

cor inue by computing gt1, the posterior target location distribution at time t given
t1

tallure to detect the target at time s = 1, ... ,t-1, using the allocations 0 (., s) for

s = 1,... ,t-1. Set € 1(.,t) equal to the optimal allocation of m(t) effort to the
1

distribution gt. Continue until time T is reached. This constitutes the first pass.

The allocation € 1 obtained on this pass is called the incrementally optimal or

myopic plan. That is, at each time period € allocates its effort ir. such a way as

to maximize the increase in detection probablli'y ,for that time period. For most

moving target problems the myopic plan is not T-optimal for T > 1.

Second iteration. Begin thls iteration by computing gi, the posterior probability

distribution for the target's location at time t = 1, given failure to detect the target

1 2at times t = 2, ... ,T, using 0 (.,t) for the allocation at time t % 2,...T. Set 4 (., 1)

equal to the optimal allocation of m(l) effort for target distribution 21 2

41(., 1), because g2 differs from the initial target distribution, pl' at time 1. If

2 12
'2I(a,s) has been computed for s = 1, .... ,t-1, then find 2i (-,t) as follows: compute

10
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2 the posterior target location distribution at time t given failure to detect using

the allocations s2(.s) for s .t-, and the allocations 0 1(.a) for a = t+l,..., T,

2 2
and set 4 (.*,t) equal to the optimal allocation of m(t) for the distribution gt. Continue

until time T is reached. This constitutes the second iteration.

th n 2
n iteration. Continue as in the second iteration with 4n in place of 4, and

n-1
4, in place of 41

The above algorithm converges to the optimal plan. That is one can find a plan

whose probability of detection is as close to optimal as he desires by performing a

large enough number of iterations. Notice that each iteration produces a plan

with a higher probability of detection than the previous one.

The above algorithm amounts to solving a sequence of stationary target problems

to solve an optimal moving target problem. There are very efficient algorithms for

solving stationary target problems when the detection function is exponential. (See

Example 2.2.8 of reference [hi .) Thus we can produce efficient algorithms which

follow the procedure outlined above provided we can compute the posterior target
n

distributions gt , t = 1, ... T, n = 1, 2,..., efficiently. Computation of these

"distributions will depend on the target motion model, i.e., the nature of the stochastic

process { Xt, t = 1, ... ,T} . For example, the algorithm described in Chapter H

is designed for Markovian target motions. In this case there are very efficient
n

methods for computing the distribution gt. The algorithm described in Chapter IV

can be used with any Wonte Carlo target motion. This algorithm is more flexible

than the one for Markovlan motions but it is also slower and requires an additional

approximation, i.e., that involved in replacing the stochastic krocess { Xt, t = 1,..., T}

by some large but finite number of its sample paths.

-.11-
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CHAPTER II

MULTISCENARIO MARKOVIAN MOTION

- In this chapter* we consider the special case of the basic search problem in

which the target moves within a finite number of cells in discrete time. The target's

motion process is assumed to be multiscenarlo Markovian which means that the target

I •is assumed to be following one out of N possible motion scenarios and each scenario

is modeled by a discrete time and space, finite Markov chain.

In the first section we discuss the class of searches that will be considered in

this chapter. In the second section we present examples of optimal plans. The

third section describes the algorithm used to compute the optimal plans and proves

that it converges to the optimal plan. The fourth section discusses a method of

- producing constrained Markovian motions.

Target Motion Model

The target is assumed to be following one of N motion scenarios. The probability

ththat the target is following the n scenario is ca where

N

n=l n

*This chapter is based on reference [b ].

r [• -13-



Each scenario is modeled by a Markov chain in the following manner. Let ae-

'I ithe set of possible target paths over times t = 1, .. ,T. A member w of Ql

specifies the sequence of oells that the target follows from time 1 to T, and

•o ; I~o , .. , cT),

th n
where is he cell that contains the target at time t. For the n scenario, q(cA'),

the probability that target follows path wo, is given by

qn((w) = rn(cl) T n(WIl W ) Tn( 2,w) .. W n -

where r t(i, J) is the probability that a target located in cell I at time t will transition

to cell j at time t + 1 and r n(J) is the probability that the target starts in cell j at

timo 1 under scenario n. Thus each scenario corresponds to a Markov chain with

transition probabilities which may vary with time.

The distribution rn specifies the target distribution at time 1 for scenario a.

It is also possible to specify the target's distribution at any additional time t = 1, ... , T.

This has the effect of modifying the transition probabilities r n for the scenario. The

method of accomplishing this is discussed in the fourth section. It results in path

probabilities of the form

q n(w) = pn(,)-n y w %Pn (W) n .
(n

11 (1 21 2,2{T2) ... T T 1

Thus, we are considering the search problem described in the first section of

Chapter I restricted to the case where the target motion process { X t=,1.... T} is a

j discrete time and space, multiscenario, constrained Markovian process.

1
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Examples

We now give three examples of optimal plans found by the algorithm described

in the third section. In all cases J is a subset of a grid of square cells with sides

three miles long which are oriented north-south and east-west. One cell is chosen

and labeled (0, 0). The cell which is i cells west and j cells north of (0, 0) is labeled (i, j).

Each search lasts for eight time intervals of one hour each. We take W(i, j) = 1 for all

cells (i, j) so that z units of search effort placed in the cell which contains the target

will yield a detection with probability 1-e -z/9

The transition function T is chosen to model truncated triangular distributions

on course and speed. When T is independent of time, the subscript t will be suppressed.

We specify the speed distribution by giving the minimum speed, maximum speed, best

speed, and a weight P3. The target chooses its speed from the truncated triangular

distribution in Figure II-1. The density of the best speed is f3 times the density of

the minimum speed, the latter equals the density of the maximum speed. When /3 1 this

is a uniform distribution. A similar distribution describes the target's course. Let

T ((i, j), (k, I )) be the probability that a target which starts at the center of cell (i, j)

and which chooses its course and speed from the given triangular distribution moves

to cell (k, I ) in one hour.

Example 1: Markovian fan. The target's initial distribution is circular normal

with a standard deviation of 6 miles. It is centered in the middle of cell (0, 0) and

truncated by a 15 mile by 15 mile square whose center coincides with the center of the

distribution. The orientation of the square matches the grid. The target's motion is

single scenario Markovian with the target choosing its course uniformly from 1500

to 210 and its speed between 6 and 12 kts with a best speed of 9 kts, which is given a

-15-



FIGURE II-1

TRIANGULAR DISTRIBUTION ON TARGET SPE.D
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-eight of p = 1. 5. Independent draws are made fro'mn these distributions each hour.

I This type of moving target problem Is similar to that faced by an aircraft trying to

.1 redetect a submarine on which contact has been recently lost.

Table 11-1 shows how the target density changes with time in the absence of

I search. The target moves southward and diffuses from its original distribution. It

1 stays within a sixty degree wedge and has a central tendency because there are more

paths which lead to the center of the wedge than to the edges.

1 We assume W(J) - 1 for Je J. Ninety units of search eifort are available each

hour. Table U1-2 gives the final detection probabilities achieved by the first ten iterations

of the optimization algorithm described below. The detection probabilities converge

very rapidly; indeed the first approximation to the plan, the myopic plan, is quite

satisfactory. Table 11-3 compares the detection probabilities achieved by the myopic

plan at the end of each hour to those achieved by the plans which are optimal for 2

-- through 8 hours. During the beginning of the search, the myopic plan outperforms the

plans which are optimal for later times. In no case is the myopic plan significantly

outperformed by any optimal plan.

"* Table 11-4 shows the myopic plan and the optimal plan for eight hours oriented

with north at the top of the page. The myopic plan starts by putting most of its effort

in the center of the target distribution. It diffuses and moves southward with the target.

The optimal plan, on the other hand, starts by using most of its effort to surround

the target. By the end of the search the optimal plan closes in on the target. At

hour eight the optimal plan puts 70 percent more effort in the center of the target's

distribution than the myopic plan does.

-17-
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TABLE I1-2

CONVERGENCE OF FINAL DETECTION
PROBABILITIES FOR THE MARKOVIAN FAN

Number of Probability of Detection
Iterations After 8 Hours

1 .803

2 .818

3 .818

4 .818

5 .818

6 .818

7 .818

7 .818

9 .818

10 .818

-

II
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TABLE 11-4

SEARCH PLANS FOR THE MARKOVIAN FAN

Notes: (1)Entries represent thousandths of a unit of search density (effort/mi2). i.
(2)Ninety units of search effort are available each hour.
(3)Cells are 3 mi x 3 mi.

Myopic Plan

N Hour 1

S-. 1 (_ -1 -2

2] 0 2'35 331 .256 0
I) 2:6 631 I5o 631 256
,Of 3oI 715 331 756 381

-I] 2t6 6jl /136 631 256
-21 0 256 3d1 256 0

Hour 2

_4_. a. a. .1_ 2 -1 -2 -3 -4
. 3] C 0 3) 0 0 0 0 0

-I I C) /) 1 460 52:3 469 "?D3 0 0

-1 0 :) 269 64.61)2 6416 269 0 0
"-3] ') 1 219 65/) 693 6'0 219 0 0
-,4] 0 ;) , _ ,5! 39 - ,53 639 262 ) )
""I 0 0 .) 246 3'2.3 246 0 0 0
-61 C) ;) ) C) 0 ) 0 0 0

Hour 3

A_ 4 ...a. ..2,.. _...L LL -1 -2 -3 -4 -5

-21 ,) C) C) ,) ) C) 0 r 0 0 0
-ii .J I ( '1 2 5L 2 ) 0 - )
-41 ) C, ) 2od 45/ 484 457 2dd ) 0
-j .3 9 1/ 534 3,4d 534 397 r) 0
-. ')J -' " .4 0 . 33L) 5,1- 535 401 ( : 0
-1J ,0 ) ,) 3 5,2 54b 522 353 3 '3 0

- ") r , 2, 23 9 2?,-3 239 2 8 0 0 0
-9 I 0 .f ) 0) ) 0 , ) 0

- I . i I C) C r 0 .- ,) BS V ,A IL A C)
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Optimal Plan for 8 Hours
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S• Hour 4

2 i0 -2, -3 -----4--

S 158 25! 2o3 255 15d-2

rn/I ) 16/ -)00 323 334 32J 300 161 C
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Example 2: Constrained Markoviau fan. In this example we consider a target

"t • 1motion which to identical to the one in Example 1 except that the target is constrained

to have a truncated normal distribution at time 8 which is equal to the initial distribution

translated 60 miles due south.

The transition function r for this constrained process Is computed by the method

Table 11-5 shows how the target density changes over the first four hours in

the absence of search. The target moves southward and diffuses from its original

distribution. During the last four hours the target density is a mirror image of the

first four hours. It still moves south but converges back to a truncated normal

distribution with a 6 mile standard deviation.

Ninety units of search effort are available each hour. The detection probabilities

for successive iterations of the algorithm are . 926, . 932, . 932, . 932, and. 932

which repeats. These probabilities converge rapidly and again the first approximation

to the plan, the myopic plan, is quite satisfactory. Table U-6 compares the detection

probabilities achieved by the myopic plan at the end of each hour to those achievea

by the plans which are optimal for 2, 4, 6, and 8 hours. Again, no optimal plan

significantly outperforms the myopic plan. With the exception of Example 3 below,
these conc'lusions have been confirmed by other examples including some with much

smaller overall detection probabilities.

Table 11-7 shows the optimal plan for eight hours. Again, only the tables for

the first four hours are displayed since the last four hours are a mirror image of

them. At hour 1, the optimal plan uses most of its effort to surround the target rather

"than searching the highest probability cells as the myopic plan, which is shown at the

ii •-29-



TARGET DENSITY FOR THE CONSTRAINED MARKOVIAN FAN

Notes: (1) Entries represent thousandths of a target.
(2) Cells are 3 mi by 3 mi.

Hour 1
NN 2 1 0 -1 -2

21 23 34 38 34 23
1] 34 49 66 49 34
0] 38 56 63 56 38

-1] 34 49 56 49 34
-21 23 34 38 34 23

I Hour 2

4 3_ 2 0 - -2 -3 4

01 0 1 3 7 7 7 3 1 0
-1) 0 6 17 31 36 31 17 6 0
-2] 1 9 27 50 58 60 27 9 1
-3] 1 10 30 55 64 55 30 10 1
-4) 1 9 25 47 54 47 25 9 1
-5] 0 4 12 23 26 23 12 4 0
-6] 0 0 2 3 3 3 2 0 0

Hour 3

4 3 2 1. 0 -1 ~ 3-4

-2] 0 0 1 1 1 1 1 0 0
-31 0 2 5 9 11 9 5 2 0
-4] 2 7 18 31 37 31 18 7 2
-5] 2 11 29 49 59 49 29 11 2
-6] 3 12 31 53 63 53 31 12 3
-7] 2 9 24 40 48 40 24 9 2
-8] 1 4 10 17 21 17 10 4 1
-9] 0 1 2 3 3 3 2 1 0
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TABLE II-5 (continued)

5 4 3 2 1 0 -1 -2 -3 -4

- -53 0 0 0 1 2 2 2 1 0 0 0
-61 0 1 3 7 12 14 12 7 a i 0

f ! -7] 0 2 8 19 33 39 33 19 8 2 0
-81 0 3 12 30 50 60 50 30 12 3 0
-93 0 3 12 31 52 61 52 31 12 3 0

-10] 0 2 9 21 36 43 36 21 9 2 0
-11] 0 1 3 8 14 17 14 8 3 1 0
-12] 0 0 1 1 2 3 2 1 1 0 0

Hours 5-8 are a mirror reflection of hours 1-4.

TABLE 11-6

DETECTION PROBABILITIES FOR
THE CONSTRAINED MARKOVIAN FAN

Number M yopic Plan which is optimal for
of hours plan 2 hours 4 hours 6 hours 8 hours

1 .357 .346 .324 .313 .311
2 .555 .560 .549 .541 .540
3 .672 .679 .673 .672
4 .750 .762 .758 .767
5 .807 .818 .817
6 .852 .862 .862
7 .889 .898
"8 .926 .931

•-31
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TABLE II--

SEARCH PLANS FOR THE CONSTRAINED MARKOVIAN FAN
2y

Notes: (1) Entries represent thousandths of a unit of search density (effort/mi 2
(2) Cells are 3 mi by 3 mi.

Optimal Plan for 8 Hours

Hour 1

N
42 1 0 -1 -2

21 448 563 568 563 448
1] 423 361 263 361 423
01 392 268 165 268 392

-1 403 338 262 338 403
-21 416 508 502 508 416

Hour 2

4 3 1 0. -1 - 3-

01 0 0 0 0 0 0 0 0. 0
-11 0 0 101 485 532 485 101 0 0
-2] 0 0 338 605 616 605 338 0 0
-33 0 0 363 602 617 602 363 0 0
-4] 0 0 312 583 599 583 312 0 0
-5] 0 0 0 268 323 268 0 0 0
-6] 0 0 0 0 0 0 0 0 0

Hour 3

4 3 2 1 0 -1 -2-3-4

-2] 0 0 0 0 0 0 0 0 0
-33 0 0 0 0 0 0 0 0 0
-4] 0 0 257 449 484 449 257 0 0
-5] 0 0 424 546 568 546 424 0 0
-6] 0 0 435 553 580 553 435 0 0
-7] 0 0 363 518 544 518 363 0 0

-83 0 0 0 223 285 223 0 0 0
-93 0 0 0 0 0 0 0 0 0
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TABLE II-7 _Joon tinuedj

I Hour 4

5 4 3 2 1 0 -1 -2 -3 -4 -5
-5] 0 0 0 0 0 0 0 0 0 0 0
-6] 0 0 0 0 52 121 52 0 0 0 0
-7] 0 0 0 302 430 462 430 302 0 0 0
-8] 0 0 74 436 503 523 503 436 74 0 0
-9] 0 0 84 441 512 534 512 441 84 0 0

-10] 0 0 0 343 469 492 469 343 0 0 0
-11] 0 0 0 0 173 240 173 0 0 0 0
-12] 0 0 0 0 0 0 0 0 0 0 0

Hours 5-8 are a mirror reflection of hours 1-4.

Myopic Plan

Hour 1

jJ 2 1 0 -1 -2

2] 0 256 381 256 0
1] 256 631 756 631 256
0] 381 756 881 756 381

-1] 256 831 756 631 256
-21 0 256 381 256 0

Hours 2-3 not shown.

Hour 4

* i3__ 2a 1 0 -1 -2 -3 -4 -5
-51 0 0 0 0 0 0 0 0 0 0 0
-6] 0 0 0 0 0 26 0 0 0 0 0
-7J 0 0 0 242 505 556 505 242 0 0 0
-8) 0 0 0 402 592 614 592 402 0 0 0
-91 0 0 0 401 590 e07 590 401 0 0 0

-10] 0 0 0 295 566 626 566 295 0 0 0
-11] 0 0 0 0 92 205 92 0 0 0 0
-12] 0 0 0 0 0 0 0 0 0 0 0

Hours 5-8 not shown.
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end of Table 11-7, does. By hour 4, however, the optimal plan concentrates its

effort in the center of the target distribution.

Example 3: Multiple scenario motion. Next we consider a multiscenarto example.

Figure 11-2 illustrates the two possible scenarios for target motion with (1, J) indicating

the midpoint of cell (I, j). In scenario 1 the target starts uniformly distributed over

the square in Figure H-2 which ts northwest of the obstruction. It proceeds southward

to distribute its density at hour 4 uniformly over the square southwest of the obstruction.

Within the limits imposed by these constraints, the target chooses courses and speeds

from the triangular distribution given in row I of the table at the bottom of Figure 11-2.

After hour 4 the range of courses and speeds widens as given in row II. In scenario 2

the target again starts in the northwest rectangle but now it goes around the obstruction

to the north and east. Uniform distributions over the squares shown in Figure 2 are

imposed on the target location distribution at hours 1, 4, and 7. The course and speed

distributions that hold between hours 1-3, 4-6, and 7-8 are given by rows III, IV, and

V.

Search effort becomes available gradually during the eight hours of the search.

No search is available for the first two hours. Nine units of search effort are

available during each of hours 3 and 4 and 36 units of search effort are available

during each of hours 5 through 8. The final detection probabilities obtained by

successive iterations of the algorithm are. 465, . 519, . 519, . 519, and. 519 which

repe:ats. After a jump between the first and second iteration, the convergence is

characteristically rapid.

Table 11-8 compares the detection probabilites for the myopic plan with the

optimal plans for 4 through 8 hours. For 8 hours the optimal plan improves the

detection probabilities from. 465 to. 519. The qualitative difference in the plans

-34-
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FIGURE 11-2

GEOGRAPHY FOR MULTISCENARIO MOTION

Note. Staging areas are nine miles square.
Cells are three miles square.

I -

- -Hour 4 Hour 4

0' 50, _0545

' " ) •" 18. 0)

S' ( ~24 miles •
"" ~15 mtlesd

I I

II V

Scenario 1 Scenario 2

Course Speed (knots)

1min. max. beat weight miii. max. best weight
1 1600 2000 1800 2 3 9 6 2
II 1100 2500 1800 1 8 12 9 1.5
111I 700 1100 go 2 3 9 6 2
IV 1600 2000 1800 2 3 9 6 2

11V 1500 2100 1800 2 3 9 6 2
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TABLE 11-8

DETECTION PROBABILITIES FOR THE
MULTISCENARIO MOTION

Number Myopic Plan which Is optimal for
of hours plan 4 hours 5 hours 6 hours 7 hours 8 hours

.063 .062 .058 .041 .042 .042
.112 .112 .097 .078 .078 .078

5 .256 .269 .262 .262 .252

6 .351 .382 .380 .376
7 .425 .519
8 .465
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which causes this increase is shown in Table HI-9. Because the second scenario has

SIhigher weight, the myopic plan searches it almost exclusively during the early hours.

During the later hours, the first scenario diffuses so widely that the second scenario

is still searched almost exclusively. The myopic plan is handicapped because it does

not look ahead to see that first scenario targets get away quickly and search this scenario

* - while it is still possible. The optimal plan does this. It searches the first scenario

until it starts to diffuse, then shifts to the second scenario. This strategy is optimal

for the long term but, as Table 11-8 shows, involves a penalty during hours 3 and 4.

Further examples of optimal search plans computed by these techniques can

be found in reference (a].

Description of Algorithm

Recall from the discussion in the third section of Chapter I that the basic step

in the optimization algorithm is a reallocation of search effort at a single time interval.

Example 2.2. 8 of reference [hI gives an algorithm for finding an optimal allocation of

search effort for a stationary target in a discrete search space when the detection

"" function is exponential. Using the necessary conditions in Corollary 2. 1.6 of

reference (h) one can show that the optimal allocation is unique.

Suppose that we have a search plan 0. Let g ,t) be the posterior target

"location distribution at time t given failure to detect at all times other than t using

the plan 0. Let f* be the optimal allocation of m(t) effort for the stationary target

problem with distribution g (., t). Define .'-vt to be the search plan that is obtained

from i by replacing the allocation at time t with the allocation P*. That is, for je J,

I ~00) 'Js) for a

-37-



TABLE 11-9

SEARCH PLANS FOR .ULTISCENARIO MOTION

Notes: (1) Entries represent thousandths of a unit of search density (effort/mi2 ).
(2) 0 Indioates the position of the obstruction.

(3) Cells are 3 mi x 3 mi.

N Myopic Plan Optimal plan for 8 hours

Hour 1 -- No Search Available

Hour 2 - No SIerch Available

Hour 3

0 0 0 0 286 251 0 0 0 0 0 0
0 0 0 0 246 217 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 204 281 0 0 0 0
0 0 0 0 0 0 211 304 0 000 0

Hour 4

0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 202 231 0 0 0 0 0 0 0 0
0 0 0 0 0 0 223 245 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00 o 0 0 0
0 0 0 0 0 0 0 0 0 0 00 0 0 0 0
0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 o0 o 0 0 0
9 9 9 0 0 0 0 0 154 92 266 0 0 0 0 0
9 9 9 0 0 0 0 0 157 94 237 0 0 0 0 0

t

i: 5 8
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TABLE 11-9 .continu

Myopic Planr Optimal plan for 8 hours

SHour 5

0 0 0 0 0 0 0 241 0 0 0 0 0 0 0 0 324 112

0 0 0 0 0 0 464 716 675 0 0 0 0 0 0 287 645 569

0 0 0 0 0 0 321 714 730 0 0 0 0 0 0 165 654 U83

0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 217

"0 0 0 0 00 0 0 0 0 0 0 0 0 000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 24 150 111 151 24 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

Hour 6

0 0 0 201 94 0 0 0 279 130

0 0 526 548 627 0 0 395 631 581

0 0 471 556 682 0 0 345 657 596
0 0 0 161 133 0 0 0 279 107

Hour 7

"000 261 82 214 000 353 0 248
0 0 537 316 556 0 0 611 79 538

0 0 525 312 594 0 0 614 110 603
0 0 224 114 264 0 0 356 90 398

Hour 8
000 0 0 0 000 0 0 0
0 0 0 0 0 0 0 0

0 0 203 428 204 0 0 152 427 153

0 0 376 609 376 0 0 420 711 421

0 0 376 609 377 0 0 392 674 392
" 0 0 59 326 58 0 0 0 259 0

I.
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The algorithm proceeds as follows:

(1) Let 00 be an initial guess for the search plan.

(2) Lot t be asmall number.

(3) Let =0.

(4) Perform step (5) for t = 1 to T.

(5) setd'TZ+t 2t" TT+t-1"

(6) if I PT( - PTTI < , stop: the answer is
T (1+1)T I'T (11T

(7) Otherwise increase I by 1, and return to step (4).

While the initial guess 0 may be any search plan, we generally use 40(J, t) = 0

for j c J, t l, ... , T. In this case fornrrng 41' 02 .... OT corresponds to

allo'ating search effort at successive time intervals in order to obtain the greatest

increase in PT at the current time interval -- not to maximize PT in the long term.

Thus, 4' is the myopic or incrementally optimal plan.
T

Implementation of the algorithm. The only difficult step in the algorithm is the

computation of E t" Let 0 = 0lT+t-l" Then this step consists of computing the

distribution g0(., t) and finding an optimal allocation of m(t) effort for this distribution

when the detection function is exponential. Example 2.2. 8 of reference [h] gives an

algorithm for finding such an allocation, so we consider only the computation of

g9(. ,t).

Since the algorithm for finding an optimal allocation for g4 (., t) produces the

same allocation for any "distribution" Kg 4' (- , t), where K is a positive constant, we

shall be concerned only with calculating g 0 in an unnormnlized form.
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For Je J, define

,]-R ,1, 0) p 0),

and for 1<t<T, let

RU, t, b) = M R(k,t-1, ,) exp(-W(k)O(c,t-1)/A(k))Tt l(k, J)pt0)
Ske Jt1

Similarly for je J, let

S(J, T, 0) 1

4- and for I <t < T,

SSO,t, 4) = E Tt(J,k)Pt+l(k) exp(-W (k) (k,t+l)/A (k))S(k,t+1, 0).
S~kc J

- If P1 is the initial distribution and p t) = 1 for t>1 and jE J, then R and S have

I natural probability interpretations. In fact, R(J, t, 0) is the probability that the

target reaches cell J at time t and is not detected by the effort at times a - 1, ... , t-1

1while SO, t, 4) is the probability that if the target starts in cell j at time t it will

Sl not be detected by the effort at times s = t+l, ... , T. As a result, R(, t, O)SO, t, 0)

is the probability that the target is located in cell J at time t and is not deteoted by

the effort at all times other than t. It follows that

g9(J,t) = RO,t, O)S(j,t, 0)/K(t) for je J, 1 <t<T

where

JE J

In the fourth section It is shown that up to a constant factor the probabilistic tnterpretatl
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of R and S remains true for the weights p constructed for the constrained Markovian

motion. Thus, g•(., t) may be computed by the above formula for constrained Markov

motion. As we noted before, the algorithm In Example 2.2.8 of reference [h ist

insensitive to multiplication of the target distribution by a constant, so the factor

K(t) is not computed.

Observe that it is not necessary to recompute the entire R and 8 functions at

each step in optimization. Suppose one has reached time T in the algoi-ithm and is

about to begin at time 1 again, i.e., one has returned to step (4) in the algorithm

description. The allocation just computed is 0IT for some Z. At this point one

computes S(-, t, *LT) recursively for t = 1, ... , T-1, calculates g lT(., 1) from (U1-4)

and reallocates effort to obtain lT+l" Having done this one computes R( 2, *ZT+1)

from (11-2) and then g 1T+ from (U1-4) using the fact that S(. , 2, 0 IT+1) a 8(., z, IT)

because the reallocation of effort at time 1 does not affect the computation of

S(., 2, IT+l). The distribution g4' T+t Is computed In a similar fas..on for t - 2, ... , T.

Thus for one cycle through the time periods t - 1, ... , T, one need compute R and 8

only once.

If there is more than one scenario, thon one pro-ceeds as above to compute
nth n

gn. ,t) for the n scenario and takes g,(.,t) P a g nt)
n 

- t

The computer program which implements this algorithm is described in

references (I I and bm].

Convergence of the algorithm. We now show that this algorithm halts, that

the resulting plan 4# is in *(m) and that as t approaches zero, 0# approaches

optimality. The definition of Z shows that c' W(m) and that 0 < P

_ PTI] _ 1. Thus lim PT[I] exists and liml.a I T[lI÷)T] PT[4IT| 0
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S I It follows that tbn. algorithm halts. As c -'0, the answer is farther into the sequence

ko 02j . .. * ' o we need only show that lim. 1 -- P7T0 L = msx{ PT• : - C *(m)}.

[- : In fact, we shall show that for some subsequence {lk}k 1 , *= limk., 4' exists

I •and is T-optimal within *(m).

CE r Since J and T are finite and m(t), t 1, .... T is bounded, we may consider

1 =1, 2,... to be a sequence of points in a bounded set of a finite dimensional

Euclidean space. Thus, there ita subsequence {f I such that { 0 k=1, 2, ... }

converges to a point 4*. Clearly c* c *(m). The continuity of P implies that

liml .OWPT T[0I] limk.wPT[lk k PT so that we need only show that

"P[ý*] = max{PT[(] : 0 e I(m)}, I.e., 0* is T-optimal within f(m).

Since liml1 P T[ 10] exists and PT and Et are continuous for t 1, ... , T, It

follows that

PT,1 *3 lim.',-OPT[45 J = llmk.OPT[•/k+lJ
k 'k1

4 - lmk..a PT[(•I(• T) = PT[ZI((*)j.
* k

- Since P I P[ErI0*], It follows that both 64(., 1) and 2i'*(., 1) are optimal

allocati'ns for the stationary target problem with distribution g(., 1) and exponential

detection fnction. By the uniqueness of such solutions •I0* = 4* By a similar

arguinentE 2 ~17 Z2 0*- 0* and, in fact, Et 0* =5*fort1, ... , T.

Thus, for each t - 1, ... , T, 4*(., t) maximizes the probability of detection for a

stationary target with distribution g.( t) and exponential detection function under

the effort constraint m(t). So 4* satisfies the basic necessary and sufficient condition

given in the second section of Chapter I and is therefore T-optlmal.
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Constrained Markovian Motion

In this section we discuss a method which allows the user to specify constraining

distributions for the target's location at times t 1 ,t 2 , .... t E {1,. ,T}. Normally,

the search planner specifies an initial distribution and a transition matrix to identify

a Markov process which represents the target's motion. The initial distribution may

be obtained from a long range detection with poor localization and the transition

matrix may be developed from general knowledge of the target's behavior. However,

the search planner may have information which leads him to believe that the target

will have known distributions r for I 1, ... ,where I <t < ... < t < T. In this-1-

section we discuss a method for modifying a given transition function r to obtain a

Markov chain { X t; t=O, ... , T} such that X , the target's position at time t, has

distribution r for i= 1, ... , n.ti

To begin, we consider the situation in which the target's distribution is specified

at time t = 1 and t = T. (For this discussion we will assume that there is only one

motion scenario and drop the scenario index from r, -r, and q.) We consider target

path probabilities q(w) which are computed by

q(w) = p(w)T 1 ( 1 ,9 2W 2 (w 2 , 3 ) . .. T T(W T W, T)pw(wT), (I1-5)

where

PO), P'0) a 0 for j J.

In most cases, p and p' will not be probability distributions. If p is a probability

distribution, then equation (1-5) may be interpreted as taking a Markovian motion
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T T
with prior distribution p and transition nmatrix T and combining this according to ]
Dempster's rule (see references [ia and [o)) with an independent estimate of the

target position at time T which is represented by the probability distribution which is
proportional to p,. The information in p' will, in general, change our estimate of

where the target was at time zero. It will also change our estimate of how the target

made its transitions. If, for example, p, is a more concentrated distribution than

the distribution of a target which diffuses from p according to T, then the target's

transitions for times near T will have to have a bias toward the mean of p, to recon-

centrate the target's density.

In order to compute the prior distribution and transition probabilities which

result from this constrained model, we introduce the functions G and H where

G: { 1, .... T} x J x J-.[O, 1] is defined recursively by

G(1, J, j) = 1,G(1, i, J) = 0 if i #j

G(t,i,J) -- G(t-1,i,k) Tt-l(k,j) for 2 <t <T
kE J

and H: { 1, ... , T} x J x J-[O, 11 is defined recursively by

H(T,J,J) = 1, H(T,I,J) 0 0 if I J

H(t,i,J) = M Tt(i,k) H(t+l,k,J) for 1 <t <T-l.
kc J

For a Markov chain governed by the transition function r, G(t, I, J) is the probability

that the chain is in state J at time t given it was in state I at time 1. SlmilarlYH(t, IJ)

is the probability that the chain is In state j at time T given it was in state i at time t.

S~-45-
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Let

r(I) p (1) H (1, J) Pt () for ic J.-l

From the definition of H and the path probabilities q, one can see that r(l) is the

-um of the probabilities of ll p1aths which start at1, so r(i) is the probWality that

k the target starts in cell i. Likewise, the probah lity that the target ends in cell J

is given by

r'O) T p (1) H(1,i,) P'(J). (lPl-l :
tE J

21 The imposition of the weights p and p' on the sample path probabilities cAUses •S

the transition probabilities of the Markov chain to be modified. Let - indicate the

modified transition function and { t ; t 0, ... , TI the stochastic process with path

probabiilttie given by q in (11-5). Then

Tt(i,j) = Pr{X. iand Xt -j}/Pr{X -i}, (11-12)

where

Pr Xt =I and Xt+ 1} ={w:wt=i and wt+1 =}q(w)

t-

-, Z 1 p (k) G(t,k. 1) rt(ii) H(t+l,J,k') p'(k'),

• , kEJ k'WJ

and

kcJ k'WJ
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4 Thus

t(.J) T Tt(t, )) E H(t+l,J,k') p'(k') E H(t, 1.kW) p'(k' .01:
.kl J [kCJ

• " From equations (11-10) and (11-13) one can calculate that

T-1,

,• ""Pr{w•} r(w 1) r t(W~~~1 0 C

.. ~T-I.
Tt•t, t+l) T

t=1

= q(w).

Thus the transition function T along with the initial distribution r produces the path

-. probabilities q defined in (II-5).

The search planner's estimate of the target's local motion char&cteristics is

normally in terms of r. When the searcher's estimate of the target's prior distri-

bution comes from a contact with an associated uncertainty, which is based on the

characteristics of the detector and the detectability of the target, but not on the

subsequent motion of the target, then this is an estimate of p. On the other hand,

"when the searcher's estimate of the target's prior distribution comes from historical

information which accounts for the target's subsequent motion, then this is an .

estimate of r. Thus the searcher may reasonably start with either r or p. Likewise,

he may start with either r' or p'.

I Tne program described in reference [a] handles four forms of input; p, T",

p, r, r'; r, T. p'; and r, T, r'. Computationally, the form p, T, p' is easiest to

work vhth so we convert the other inputs to this form. When p, T, and r' are entered,

3 we use equations (11-8) and (11-9) to compute H and then solve equation (II-11) for p'.
I4
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The solution is just

p'() r'(J)/ E p(k) H(1,k,j)
kc J

for all Jc J. The denominator of this expression can vanish only when it is physically

impossible for a target which starts in a cellk with p (k) > 0 and makes only transitions

which r gives nonzero probability to got to call J at time T. If r'(o) also vanishes, we

can set p'(J) = 0. On the other hand, if r'() ý 0, then the inputs describe an impossible

situation and no solution is possible. Likewise when r, -r, and p' are entered, we

compute H and then solve equation (11-10) for p. Again there is no solution only in

a physically impossible situation.

The final input possibility; r, T, and r'; presents greater difficulties. We

compute H as above and then solve the quadratic equations (11-10) and (II-11) for

p and p'. This is accomplished by the following iterative algorithm:

(1) Let c be a small positive number.

(2) For alljc Jsetp 0 (J)=r(j).

(3) For all j E J set p(J) =r'(j).

(4) Set I 0.

(5) For all JE J set p U) r(j)/ E H(1, J. k) p (k)]

(6) For all j c J set p+() =r') / [(k E p (k) H(1,k.j)]
1+1 ke J 1+1

(7) If Ip +10) -p (J)1 < E and Ip 1+l(k)-p;(k) <- E for allJ, kcJ, then

stop: The answer is p P/+p and p' =p'+i"

(8) Otherwise, set I = 141.

(9) Go back to step (5).
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As above, a zero should be supplied for the result of an indicated division

of zero by zero in steps (5)-(6). While no convergence results are available for

this algorithm, it has proven effective In examples such as those given In the

second section.

More generally, we may have information about the target's distribution at--

a sequence of time intervals 1 < t 1 < t2 < ... < t < T. For this case we consider a

more general definition of q as follows:

T-1
q(w) = p I [Tt(wtt+I P t+ (Wt+) for wE 0.

t=1

Fortjt 1 ,..., t1 , we takePtO)= 1 for JeJ. Fort., n1 .... , , Pt isanon-
nnegative function on J which is related to our information about the target's distri-

button at the times tn, n = 1, ... , 1. That is the user may specify ptn for tn = 1, ... , 1

or he may specify rt the target's distribution at time tn and solve for pt as above

n tn

fornl, ... , n.

Once we have solved for or obtained the Pt for t = 1, ... , T, we can calculate

q(wj) as though it were obtained from a Markov chain with initial distribution p1 and

transition function T' defined by

T(i,J) = Tt(ij) pt+10) fort=1, ... , T-1 and I, JeJ,

even though p1 may not be a probability distribution and -r" may be a defective

transition function. This causes no problem because the probabilities computed In

this fashion are all proportional to the correct probabilities. !n particular the target

location distribution at any t is proportional to the one obtained from this Markov

-43-
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hoain. The algorithm will give the sane allocations of effort for any two distributions

which differ by a constant factor.

Our final observation concerning the motion model is that it can be used to create

multiple soenarios. Each state can, for example, consist of a cell and a scenario

index. The target whose state oonsists of call j and scenario n moves by applying

a transition matrix associated with scenario a to j to obtain its new cell. It always

keeps the same scenario. The initial scenario weights are incorporated in the amount

of target mass which the prior distribution on the states places in states with eac(h

scenario index.
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CHAPTER III

RECTANGULAR SEARCH PLANS

In this chapter we discuss rectangular search plans, which model sonobuoy

fields, to search for a target moving in discrete space and in discrete time with

a fixed time limit, T. The computer algorithm, which generates the rectangular

search plans, is described and the effectiveness of these rectangular plans is

measured by comparison (via computed examples) with T-optimal plans. In the

last section of this chapter we summarize outstanding problems associated with

rectangular barrier search. All of the examples in this chapter are taken from

references [c] and [d].

The Search Problem

The search space, search time, and target motion assumptions are as In Chapter

1I with the exception that at each time interval the searcher must spread his limited

amount of effort uniformly over a rectangular region. The probability of detecting

the target during the tth time interval if rectangle R is searched is given by

f1- exp(-m (t)/A(R))] • p(R)

where

m(t) = total effort available at time t

A(R) = area of the rectangle R
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and

p(R) = probability that the target is located in R.

The number of time Intervals, T, is specified at the outset and the searcher attempts to

choose a rectangle to search at each time interval to maximize the probability that I
he will detect the target within the specified time limit. We refer to an allocation

of effort which accomplishes this objective as an optimal rectangular plan to

distinguish it from the T-optimal plans found in Chapter U. When the number of

time intervals Is one, we refer to the problem of choosing an optimal rectangle as

a rectangular stationary target problem. Li

Rectangular Barrier Algorithm -1
In this section we describe the computer algorithm which computes the rectangular ii

search plans given In the examples in the next section. Although % e do not claim that

our rectangular plans are optimal rectangular plans, experimental comparison with

T-optimal plans shows that our plans cannot be far from rectangular optimality sincet

in fact these plans are not far from T-optimality.

The motivation for the approximations made by our algorithms may be found in

reference [p], where the problem of allocating a fixed amount of effort uniformly

over a rectangle to find a stationary target, whose location distribution is bivariate

normal, Is considered. Suppose the bivarlate normal distribution has stardard

deviations aI and a2 along the major and minor axes, respectively. Reference I p]

then considers only rectangles centered at the mean of the distribution, oriented

K _along the major axis of the distribution, and whose length and width are proportional

to a, and 02, respectively. The resulting one variable problem can be solved by
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standard calculus. Comparison of the detection probabilities of the search plan

thus produced to the totally optimal detection probability shows that the approxima-

tions involved are extremely good (see reference [q]).

With the above motivation in mind, we can now state our rectangular barrier

algorithm. Our algorithm follows the description of the basic algorithm as given in

the third section of Chapter I, except that it attempts to solve a rectangular stationary,

target problem at each time step instead of an ordinary stationary target problem.

This being the case, we need only describe the workings of our algorithm at a fixed

time step on the rectangular stationary target problem which results from motion as

well as failure to detect at all other time periods.

The rectangular stationary target problem is a problem in maximizing a funteion

of five variables given by the length, width, orientation, and center of the rectangle.

In general, this function need not be convex, so a straightforward attempt to find

the maximum by computer algorithms would be difficult. Instead, we try to take

advantage of the intuition exhibited in reference [p] to make some good choices for

some of the variables, thereby reducing the number of variables in the optimization.

Thus, at each time in the search we proceed as follows. Check whether the distri-

bution is unimodal or not. If it is unimodal we consider a single class of rectangles,

while if the distribution is multimodal we consider three classes of rectangles.

in the unimodal case we restrict ourselves to the class of rectangles that are centered

at the mean of the distribution and oriented along the major axis of the distribution.

The major axis of the distribution is obtained by computing the covariance matrix of

the distribution and finding the angle of rotation that diagonalizes the matrix. This

correspond:. tv the rotation of coordinates which transforms a normal distribution

BEST AVAILABLE COPY
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with that covarlan:e matrix into the 9roduct of two independent one-dimensional

normal distributions along the rotated axes. The axis having the disftribution with

the largest variance is the major axis. We then optimize over the two remaining

variables--length and width.

In the multimodal case, we consider the above class of rectangles and two

additional classes. To determine the additional classes we compute the two best

modes of the distribution. We then mimic, was done in the unimodal case for

the distribution near each of these mode3. To do this we assign cells to be in the

"local distribution" of one of these modes as follows. Proceed radially from the

mode until the probabilities begin to increase. Cut off the "local distribution" at

this point. The resulting grid of ceUs is what we call the "local distribution" of

that mode. We now renormalize these "local distributions" and compute the mo•an

and covariance matrix of these two "local distributions." This leads to two further

classes of rectangles, and proceeding in the manner described above, we find the

best rectangle in each of these classes. We now have three "best" rectangles, one

based on eal-h of the two best modes and one centered at the mean of the distribution.

Finally, we take the best rectangle from among these three best rectangles.

Examples

in this section we discuss three examples of rectangular search plans,

Example lt Markovian fan, n our first example, the target motion is identical

to that in Example 1 of Chapter I.

Table I below show:, rhe target density, updated by moarch effort, and our

ructangle. for 8 hours, hc" target inoves southward and diffuses from its
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l "ITABLE II-1

PROBABILITY MAPS AND RECTANGULAR SEARCH PLAN FOR
EXAMPLE 1 MARKOVIAN FAN

Notes: (1) Entries represent thousandths of a target.
(2) The rectangle for Hour 1 is the square

F -- which surrounds the entire distribution.
(3) Ceals are 3 mi by 3 mi.

F - PROBABILITY MAP AND RECTANGLE FOR HOUR 1

N Hour I

23 3,43,1 . 3,4 23
v 4, 34

" 33. . 3

3' ' - ' 34

~ 23

•,•-1 -? -3

TIME 1 PROBABILITY OF DETECTION " . 329

PROBABILITY MAP AND RECTANGLE FOR HOUR 2

- 3

Ill - 1 1 1

TM 2 PPOBABILIT OF DETECTION @ -, .46" 1_' ,"_ I v

? I -1-• . . . . . ..

TIME...JOBBILIT ., DETECTION m' "" 41• .C 7-t

, 1, ll .. ' • /1 "-55!
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TABLE IL.. .LP2!lt uued

PROBABILITY KAP AND RECTANGLE FOR HOUR 3

1 4

II

1 0 -3 1.. .. . .. II
- LI * 1 -; ? 1 2 '-#

_'.4

1 '• 1A 2"E "'7 At• "1 1h S 1

1 I " 7 3 ;- i " ,'1'' ' , ' " S" 1 i

1 .. '~ 1 1 1~ 1~ 3 1~ 12 '

;..

1 9 47 4 7 1 1

T M 3" AB•L ITY I I I I -.. . . (C m .... ...

, , I..." *•- F ... L . - .'- .
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II TABLE III-1 LontLnued),

PROBABILITY MAP AND RECTANGLE FOR HOUR 4 j

if

,I- 
-. 4- ., ., ] 1 1 1 1 •

1
1A

1 3 ' 5 3 1 Iv

- ? I .* 12 1 f6 10 15 12 6 ,* A I ,-

2. "7 12 1:. 73 25 2? 3" 12 ' 2

3.. 1 5 2. 4r V 4 2 2? 1; 3

"" 3 15 22 , 3 2e 21 3

1 3 '7 '3 " , 1 2•' 23 I' 9 3 11

- * ** 1 
241" 1~ 12 *7 2 1

•i 
, ,4 ,, 1 ' 1'- 3' 1 3 e, 2,- 

.......
1

2 3 ii '~ 3 2 1

A 1 1 v

"-14
"3 2 1 ' -1 -2 -3 -4 -5 -'3 -,

TIME 4 P'ROBABILITY OF DETECTION = .870 (Cumulttvol)

5-57-
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TABLE III-I (oontinued.

iIi

PROBABILITY MAP AND RECTANGLE FOR HOUR 5

". °* v" 1 2 2 3 • 3 2 2 1 i
- 1 23 -. " * * ' ] * * 7 * * 3 * 1 #*

•~~~ 3

2'2 12 7 e 1

2 2 . 4 " , 2 .2.3 2

'• 2 5 1' 1 2'• 72 " 7 73 2( 1 . , 2

-14.

TIME 5 PROBABILITY OF DETECTION -. 718 (Cumulative)

"• -I•1i-
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TABLE 11-1 (Lcontinued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 6

t1

13 1 1- 1 1 P 15 13 9 * 6

""1 ' * .1 1 1 1 2 1 1 4 1 •7

1 I 1 1 4 15 5 1 3 5 2 1

-111 ?2 ' 6 * 1" l • 1" # * 4 * 2 * ,*

1 2 4 1 • " " . 4 V ,

-- * 1 , 3 1 I 1' * 1 15 13 9 * 3 1

1 3 J V 14 17 " 21 2- 17 16 I " 3 i

1 3 ,• ]° 14 1"7 1U 2• 10 1, It 1V ' 3 1

1 3 u ,• ] VI 1• 1? i 12 11 5 2 1

-1~~ ~ 2 .. •..

3 1 2 i I 2 ii . .

TIME 6 PROBABILITY OF DETECTION -,764 (Cumulative)
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TABLE r-1 (continlued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 7

• r' ' , '"; 1 1 1 r, - - . r, -* •

* ' 1 1 22 2 2 1 1 ' '

-- S , o ,, * o . S * S * * S * 4 5 5

1 3 " 1-. 45 5 * S, " S S ., * "* S S

S1 2 ? r. "7 Ull 1 11 •" " 5 3 2 1 "
-[ " - !S • _ *, S • o S o *

' 3 " 1 , 12 12 12 1 - 5 3 1

:. :' "• - 1 1" 15 1' 15 33 11 q " 5 ? "-

l 7, • 1 12 1, ], 1 C) 15 14 12 I 7 e

1 3 . " 1 1A 13 1 5 15 13 31 2 1

S 5 5 1. 1 .• s 3 1 ,

I I 12 1 1

"2 I" " 1 1 3 " 2 1 "

1 --- 3

, 1 1 i' -i '- . 3. .. A r - • - • I -

TIME 7 PROBABILITY OF DETECTION .781 (Cumulative)
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I-1

•S -• : --A . .b:. .. . .. .... . ... .. --, D- .........-.--... • - ""• - - •.• .

L 1 1

• - • ,.T A B L E III-' _ .c o n tin u e d__ _j

PRBAILTYMAP AND RECTANGLE FOR HOUR 8

S- - -14 • 1 - .. . .1 • . . . . . . ..* *

•' • -15 .. . . . . ..* *.. .. * . . ..

" I 7 2 3 4 '4

1 ' S 7 4 2 1 '

-17 • ** *-- . . . . . . .. . . .

'" l 2 .- , '. :' ] 11 1 1 I i -
- 1 8 .. .. . . .. .. . . . -

1 2 3 , _ t 1" 11 1 ] 11 3 3 2 3

-19 .. . .. . .. .. . ...1 2 4 1 ]: 11 11 11 11 I1 11 1H '4 2 1
-2 0 . * .* . . * . . . . * . . * * . . . .*

1 • , 1 12 1 11 12 11 12 12 11 F 5 2
- 2 1 .. . . . . .. .. . . -

] 2 '7 ' 11 11 11 1 1 11 11 ]1 1 a 1 4 2

I 2 3 i, 1 " 1 11 11 I 3 1 " 3 2

- -23 ... . . . . . . .. .. -

1 2 4 4 2 1
-24 . . * * . .. .. *.-

!|".- 2 6 . .. . . . . ..* * * * * . . . . . .

.-27-
8 - 7 6 5 4 3 2 1 -1 -•-2 - - -6 -; -7 -8 .-

j TIME 8 PROBABILITY OF DETECTION 0 . 802 (Cumulative)
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original distribution. The searcher has 90 units of search effort available each hour

which he applies uniformly over the rectangles shown.

As can be seen from Table HI-I, the rectangles chosen for all 8 time periods

are intuitively very reasonable. Table 111-2 below gives the detection probabilities

for each time Interval for our rectangular plan and optimal plan for eight hours.

As Table If-2 shows, the rectangular plan has detection probability only. 017

less than the detection probability of the totally optimal plan.

Example II: Constrained Markovian fan. We now modify the previous example

by assuming that historical information indicates the target's distribution at time

8 as well as at time 1. In particular, we assume that at hour 8 the target's prior

distribution Is identical to the initial distribution but translated 60 miles south. The

motion in this example is identical to that In Example 2 of Chapter IL Note that the

distribution which appears in Table 111-3 below Is not circular normal at time 8

because search effort has been applied during hours 1 through 7 Inside the L' 1cated

rectangles.

For each of hours I through 8,Table 1Ul-3 shows the target distribution conditioned

on failure to detect prior to that time along with the search rectangle for that hour.

The target Initially diffuses, but by hour 5 it must start to reconoentrate Its density

to attempt to meet the constraint at hour 8.

Because of the constraint at hour 8, the posterloz distributions are more

concentrated so that giessnig the rectangles by inspection might appear to be easy.

However, choosing by inspection can lead to mistakes. For instance, one might

gluess that at hour 2, the 5 x 6 rrtvangle with vertices (2, -1), (2, -6), (-2, -6), and

(gt
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,TABLE 111-2it

DETECTION PROBABILITIES8 FOR EXAMPLE 1

K •Probability of Detection for

optimal Plan
Rootmm ;, r Plan tor 8 Hours

.329 .311

2 .481 .515

"3 .599 .624

4 .670 .692

,5 •.718 .739

6 .754 .773

7 .781 .798

""8 .802 .818
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TABLE 111-3I
PROBABILITY MAPS AND RECTANGULAR SEARCH PLAN

FOR EXAMPLE 2: CONSTRAINED MARKOVIAN FAN

Notes: (1) Entries represent thousandths of a target.
(2) The rectangle for bour 1 is the square whioh surrounds the

entire distribution.
(3) Cells tre 3 mi by 3 mi

PROBABILITY MAP AND RECTANGLE FOR HOUR 1

N 2
I 23 34 38 34 23

1 . . .
34 49 56 49 34
3 9 6 4
38 56 63 56 38

34 49 56 49 34

-2 .

23 34 38 34 23'VA ~~~~-3 -------.

2 1 0 -1 -2 -3

TIME 1 PROBABILITY OF DETECTION . 329

L

-644-
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IvI
TABLE 111-3 (continued)

--
I- I

PROBABILITY MAP AND RECTANGLE FOR HOUR 2

.1e

0 1 3 7 77 I3 0

0 6 17 31 36 31 17 8 0-2 . .. . . . .

1 9 27 50 58 50 27 9 1

-3* *. . .

1 10 30 55 64 55 30 10 1

1 9 25 47 54 47 25 9 1

0 4 12 23 28 23 12 4 0

0 02 3 3 32 0 0

4 3 2 1 0 -1 -2-3-4 -5

TIME 2 PROBABILITY OF DETECTION 5 539 (Cumulative)

I

12

_________ iT
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TABLE I-_._ oott uu d)

PROBABILITY MAP AND RECTANGLE FOR HOUR 3

-2
0 0 1 1 2 1 1 3 L

-3
1 3 7 10 11 10 7 3 1

2 9 a Os -26 W9 1 9 2
-5

4 15 31 44 45 44 31 16 4

4 16 33 47 48 47 33 16 4

-8 3 12 26 38 40 38 26 12 3; ~~-8.. ..

1 5 12 19 21 19 12 6 1
-9 . .

0 1 2 4 4 4 2 1 0
-10 . . . .. . .

4 3 2 1 0 -1 -2 -3 -4 -5

TIME 3 PROBABILITY OF DETECTION - . 660 (Cumulative)

II

I

I- -- _ . _ - - . . • • -_. . * _



1... a

] -- ~~~TABLE 111-3 (otne.

I

--

I • PROBABILITY MAP AND RECTANGLE FOR HOUR 4

-8

. .'•

S5 15 3 3 2 1 0 0
-6 . . . .

C 1 6 10 15 17 15 10 2 1 0

1 4 11 23 32 36 32 23 11 4 1
-81

1 5 15 29 38 42 38 29 15 5 1

1 15 29 3741 37 29 15
-10 L.. . .

1 4 11 23 32 36 32 2•3 11 4 1

-12 . - . . .

0 0 1 2 4 5 4 2 1 0 0
-13 . ..

5 4 3 2 1 0 -1 -2 -3 -4 -5 -6

TIME 4 PROBABILITY OF DETECTION •744 (Cumulative)

-7
1

L- _ ___•~~ 47- __- __



TABLE 111-3 (continued)

PROBABILITY MAP AND RECTANGLE FOR flOUR 5

-b
0 • 1 3 5 5 5 3 1 0 0

-9 . - . i

0 2 6 13 19 22 19 13 6 2 0

1 4 12 23 31 35 31 23 12 4 1

1 b 16 28 35 38 35 28 16 6 1
- 1 2 . . .. .. . . .

1 6 15 27) 34 37 34 2" 15 6 1
-13 . . .. .. . . .

1 4 11 22 31 35 31 22 11 4 1
-14 . 0 * *

S0 1 5 1I lb 21 18 11 5 1 0
- 1 5 . . . . . .. . . .

0 0' 1 2 3 4 3 2 1 0
-16

5 4 3 2 1 o -1 -2 -3 -4 -5 -6

TIME 5 PROBABILITY OF DETECTION =.800 (Cumulative)

-88-



I f I TABLE 111-3 Leontinuedj

• I PROBABILITY MAP AND RECTANGLE FOR HOUR 6

- I

-11 * . . . . . . .4 4 4 .. .

0 0 2 3 5 6 5 3 2 0 0
- 1 2 . . . . . . . ..

0 2 6 " - t 8 2
-13 ...

1 4 14 21 33 32 33 2' 14 4 1-14 . .. . . .. .0

1 5 17 31 31 35 37 31 1"' 5 1-15 . .. . . .. . i *

1 5 16 30 36 34 36 30 16 5 1-16 . .. .. (3
0 3 12 23 30 30 30 23 12 3 0

0 1 4 11 14 15 14 10 4 1 0

- l b . . . . . . . . . . .
0 0 0 1 2 2 2 1 0 0 0

5 4 3 2 1 A -1 -2 -3 -4 -5 -6

II STIME 6 PROBABILITY OF DETECTION .4 Cmuaig

1 -69-
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TABLE 111-3 _Acontinued

L PROBABILITY MAP AND RECTANGLE FOR HOUR 7

-14. ...

1 I 4 6 6 6 4 1 :i ~ ~~-15 • ,- ..

1 9 2 28 30 28 20 9 1
S~-16 ....

2 14 29 36 3o' 36 29 14 2
-17 . . ..

2 lo 30 36 37 36 30 16 2
-10

2 15 29 3b 36 36 29 15 2

1 11 23 32 34 32 23 11 1

3 1 12 13 12 3
-21

t 4 3 2 1 0 -1 -2 -3 -4 -5

II
h i L

TIME 7 PROBABILITY OF DETECTION =.884 (Cumulative)
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I

T TABLE I I-3 L(contin ued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 8

I

- 39 43 45 43 39

4f 40 39 40 40

-20 . . .
41 39 37 39 41

-21 . . . .
39 36 36 38 39

-22 .
37 42 44 42 3"7

-23
2 1 0 -1 -2 -3

1

i

I

TIME 8 PROBABILITY OF DETECTION ff. 922 (Cumulative)

1 -71-



can check that the probability of detecLdon usini this rectangle is 52194, which is

not as good as the rectangle chosen by the computer.

Table I-4 compares the detection probabilities for the optimal and rectangular

plans for each of the eight hours. As can be seen, the rectangular plan never is

significantly behiri either the myopic or optimal plans. The rectangular plan has a

final detection probability only . 010 less than the optimal plan for eight hours.

Example 3: Radial flee. In our last example the target starts from the same

prior distribution used in the two previous exanples. Its speed is chosen uniformly

from the interval (6, 12). To choose its course, it first chooses one of eight base

headings: 22. 50, 67. 50, 112.50, 157.50, 202. 5, 247. 59, 292, 50, or 337. 50.

Having chosen one of these base headings it keeps it for the entire five time units

of the search. Once a base heading is chosen the target's course at each time

interval is chosen uniformly from whichever of the following intervals contains

the base heading: [0, 45°), [45o, 9001, [900, 1350, [1350, 180o), [180°, 22591,

(2250, 27061, (2700, 315°], or [3150, 360°]. This example approximates the

classical radial flee target motion discussed in reference [1).

As can be seen in Table 111-5 the target diffuses very rapidly and for hours 3, 4,

and 5 the target's distribution is clearly multimodal. The rectangles chosen during

these times are clearly those from the class of rectangles corresponding to one

of the two best modes. Table 111-6 compares the rectangular plan and the optimal

plan for each of the 5 time Intervals.

Outstanding Problems

In this section we summarize outstanding problems associated with the

rectangular barrier problem.

-72-
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TABLE 111-4

Probability of Detection for

8 -Interval
Time Rectangular Plan Optimal Plan

1 .329 .311

2 .539 .540

3 .660 .672

4 .744 .757

5 .800 .816

6 .846 .862

7 .884 .898

8 .922 .932

-73
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TABLE 111-5

RECTANGULAR PLAN FOR RADIAL FLEE

PROBABILITY MAP AND RECTANGLE FOR HOUR

Note: Entries represent thousandths of a target.

2
23 34 38 34 23

34 49 56 49 34

36 56 63 56 38

34 49 56 49 34
S-2 . . . .

23 34 38 34 23

-3
2 1 0 -1 -2 -3

PROBABILITY OF DETECTION 329

I
S~-74-



TABLE IIL-_ ontLd•J..

I
PROBABILITY MAP AND RECTANGLE FOR HOUR 2

6i

S0 1 2 3 4 5 4 3 2 1 0 0
4 9 V S V V V V * * V V Jn

0 1 2 5 8 10 11 10 8 5 2 1 0

0 2 5 8 11 13 14 13 11 8 5 2 0

1 3 8 11 14 15 15 15 14 11 8 3 1

1 4 10 13 15 14 14 14 15 13 10 4 1

1 5 11 14 15 14 13 14 15 14 11 5 1

1 4 10 13 15 14 14 14 15 13 10 4 1
-2 * * * * * * * * * *

1 3 8 11 14 15 15 15 14 11 8 3 1

0 2 5 8 11 13 14 13 1i 8 5 2 0
-4 * * * .

0 1 2 5 8 10 11 10 8 5 2 1 0

0 0 1 2 3 4 5 4 3 2 1 0 0
-6 * * * * * * * * * * * *

0 0 0 0 1 1 1 1 1 e 0 0 0

6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7

PROBABILITY OF DETECTION =.411 (Cumulative)

-75-
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TABLE III-3 (ontinued_

PROBABILITY MAP AND RECTANGLE FOR HOUR 3

eg 000 1 1 1 000
S . . . .

0 11 2 3 3 3 2 2 110 0
7

0 01 2 3 55555 55 250 * 26 . "
0 .1 3 5 6 7 77 7 ' 5 3 1 1 0

5
0 1 2 3 4 6 6 6 6 6 6 6 6 6 4 3 2 1 0

0 1 3 5 5 66 5 4 4 5 6 6 5 5 3 1

3 .

1 2 4 6 6 6 4 3 2 2 2 3 4 6 6 6 4 2 1

1 2 5 6 6 5 3 1 1 1 1 1 3 5 6 6 5 2

1 3 5 6 5 4 2 1 0 0 0 1 2 4 5 6 5 3

1 3 5 6 5 4 Z 1 0 1 5 6 5 5 3 1

1 3 5 6 5 4 2 1 0 0 0 1 2 7 5 6 5 3 .

1 2 5 6 6 5 3 1 1 1 1 1 .3 5 6 6 5 Z21

1 2 4 6 6 6 1 3 2 2 2 3 4 6 6 6 4 21

-4 1 3 5 S • 6 5 41. 4 5 6 6 5 S 3 1

- 5 . e * . , . . •

0 1 2 3 4 6 6 6 6 6 6 6 6 6 4 3 2 1

00 1 1 3 5 6 7 7 7 7 7 6 5 3 1 1 9I
0 -7 1 2 35 5 5 5 5 5 5 3 2 1 0 00

-8 -

0 0 00 1 1 2 2 3 3 3 2 2 1 1 0 0 0

-9 . . .. .. . . - -

-10
9 G 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

PROBABILITY OF DETECTION ".434 (Cumulative)
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TABLE 111-5 fcouLtiu ued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 4

L z
a 0 j e z 0 f 0 0 1 1 0 or 0 1 1 2 0 0 0 9 6

e e 1 e G 0 1 1. 2 2 2 1 1 1 1 2.2 1 1 0 * 00 0

0 0 0 0 0 1 1 3 3 + 3 2 2 Z. 3 +4 3 3 1 1 0 0

009+ 0 24 41 2 3 444 4 1e03

0 4 3 3 1 2 1 + 3 2 2 Z. 3 1 4 4 2 1 1 C 0

a 1 1 2 2 3 3 3 3 Z I Z. 3 3 3 3 Z. 2 1 2

0 1 2 3 3 2 Z 2 2 1 1 1 1 Z 2 2 2 2 3 3 2 2 .

a
0  

] 3 4 4 4 2 2 1 1 1 1 1 1 1 1 1 2 3 • 3 1

4 r 5 4 3 1 1 0 0 1 1 3 4• S 2 _

1 . 4 5 5 4 3 1 0 e a 0 00 a 3 3 q S 5 4 2 1

1 3 + ~ 210 4 0 0 0 2444

S 1 .2 3 3 2 Z. 1 0 6.00 z 0 0.,,• 2 3 3 2 1 ¢

3 '1

S 0 1 2 3 2 2 1 0 4' 0 0 42, 1 1 2 F

4 1 2. 3 2 1 3 0 0 0 1 1 3 + 5 s A

. 3I4 2 1 2 3. .+ , 4 - -

I t 1 I 21 3 5 4 3 2 4 540 3 2- 1 1 1

-7PROBA3ILIY OF ET00IO 3 S 6 (Cumulatie)

1 1. 3. 1 1 2 3 4. 4 4 3 1 1.00 ,

.13 .;Z; 1 2 2 1 1 2 11

~1

12 10 1 0 9 R 3 1 2 S 6 5 1 3 \2 1 -2 -3 -5 -2 -I -1 - 12

PROBABILITY OF DETECTION .454 (Cumulative)
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T A..B L•_ E != I I I -5 ý. ed )_

PROBABILITY MAP AND RECTANGLE FOR HOUR 5

,5I

.4 * 0 C O ~ , 9 1 1 1 3 2 1 2 1 1 2 2 2 ' (t 2' ' 90 Jý

3e g 0 4 2 a z 3 23 2 1 1 1 2 3 3 2 1 1 Z 0 90 '(
32 I 1 3 2 1 T a Q 0 f

2 C 0 34 3 3 7 1 1 1 2 3 3 3 3 2 1 e a f ' 0 c

* # 0 0 9 9 2 1 2 3 4 2 32 1 1 a 3 2 2 2 2 3 2 1 1 1 4' 94

C & C 9 0 0 9 9 1 2 3 3 3 0 1 1 1 1 3 3 1 1 1 1 q

SI

4"13 2 0 0 I 1 3 2 2 2 2 2 1 1 9 3 2 2 2 2 21 1 1 2 4 4

1 1 3 + 4 3 1 1 e 1 0 0 0 1 1 1 1 4 a 1 1 -3 1 3 2

4 1 3 2 2 1 4 a # 0 0 a f 0 e 3 1 2 2 3 2 5 j 3*1 2 3 4 s 3 2 1 0 a 0 0 0 0 # 0 4 5 0 4 3 Z

-1 t

C 2 3 4 2 4 e 2 C 0 0 4 0 0 90 6 49 4 1 2 2 1 z I

1b .I 2 3 A 4 3 2 1 0 0 . 0 00 t -e t t 0 q a 3 t 1 4 1

*1 23 42 42 2 0906C 4 Q000 9 t9 d 4 t1 2 34

* 2 3 2 2 1 4 C I I Q' 0 0 0 t 4Z I I I I 1 2 2 3 2 2 1

C~ 7 2 10 0 0 4 0 9 0 09 ' 4 ' 1 1 1 1 1 4

*~~~~ 3 1 2 31 14 1O 2O z 3o 2 20 2 1 1 1 i 0

ROB 10 2BI2ITY 4 F 2 =. 408 (Iu i v e 1 d

- 5

O~~~ ~~ 5 22 3.2 0 4 0 4 ~~ * 1 i 3 22 1

91~ 3 3 9 4 0 0 9 0 9 3 2T 3 a
14

4 9 1 1 1 11 7 2 1 1Z 2 3 09 4 1 1 1 1 1 1 1 4'

L4

i 14 13 12 11 i 9 a 2 5 + 3 2 1 9 1 27 -S 3 6 3 7 3 9 2 9 -19 0 9 11- I

*11..................................T.........................................................

0 0 CL 41 9 ' 5 2 1 3 3 3 3 1 9-78--



There are two main problems which need further work. The first is to

incorporate a more realistic detection function, which is better suited to the

sonobuoy problem. The second is to produce algorithms which will allow the

user to pick rectangles, which are to stay In place for more than one tune period.

As a step toward solving the second problem, we consider the problem of

finding optimal plans which are restricted to have a fixed allocation for -r hours

before choosing another allocation for the next T hours.

As in Chapter II we let 12 be the set of possible paths of a target moving in

discrete space. We assume that the searcher has -r T time periods to search and

let J be the set of all possible cells through which the paths pass. Because of the

restriction mentioned above, a search plan is a function p J x { 1.... , } -• [0, •)

such that

4 0, t) = effort placed in cell j at times T (t-l) + 1 ... , t.

If a search plan 4 also satisfies

Z 4(j,t) =mr(t) fort 1,... T, (111-1)jcJ

then we say 4 ( +(m). Note that we have m(t) amount of effort available for each

of the times T (t-l)+l . ... Tt. The only restriction is that we must allocate the

effort in the same way for each of these timc periods.

Given a search plan ¢- we assume that the detection function is exponential

so that the probability o. detection using 4b is given by

I T• = Il- 22 q(w,) exp-2 22 Wlw-rt-i) 4•(',t-i, t)/Aw,. ) ,
o• •t=I 1=0

where q(t,) is the probability of the path e.

1 -7/9-



The problem is to maximize PTT T* subject to Il1-1).

Now let• {jT 01 .... j) jiJ for i T.... and JI<SJ 2 ... _JT. For

any 1 E ST we let

S(7 ) = S1 I w passes through the cells In in naorder
during times r (t-l)+l, .... , r.

For Pny search plan 0, ý E Pr and t define

I.-1
v•t, 0)= 2 q (w) exý Z 1: W(wOSi rp(Wo S)/A(wlsl)

89( i=0 -r t(• ) -rt i -- i'"

Then for each t, l<t<T, we may write
i 1r-I

A

T[0 1- Z vt, ) expf-0 W(i) q'(jit)/A(Ji)}.

For a search plan 0, we let 't be given by
t

t = 'p(,t) for JcJ.

For a search plan 0 and l<t<T we define

"r-1
Q 1 1-Ayr 9 t 0)exp- IW(j 1,t) f(J1)

where f:J-[O,Gml.

We can now characterize an optimal search plan 0 *c l(m).

THEOREM: * e 4(m) maximizes P over *p 4(m) if and only If for each t,
'T-

1 <t<T,

Qt I*, 1 t*] = max{ Q t[*, f: X jEJf(J) =e(t)} (I2)
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WI
Proof. Since both PT and Qt [*, . I are concave functions and the effort

constraints are linear, the Kuhn-Tucker conditions are necessary and sufficient

for •* to maximize P over 0b c(m) as well for 0 to satisfy (M11-2). In fact,

the Kuhn-Tucker conditions are the same for both problems, and thus we obtain

the equivalence stated above. This proves the theorem.

Because of the above theorem, It is clear that an algorithm for computing an

optimal plan restricted to fixing effort every T times units can be obtained by

following a procedure similar to that given in Chapter II when T - 1. The only

difference is that maximizing Qt[O *, -] is not a standard stationary target problem

as in the case r = 1. As noted above, Qt([*, "] is a concave function and the

constraint in (I11-2) is : linear constraint- thus, we can apply a nonlinear

programming approach to solving this problem.

!I
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TABLE 111-6

COMPARISON OF RECTANGULAR PLAN
WITH THE OPTIMAL PLAN FOR RADIAL FLEE

Probability of Detection for

6-Interval
Time Rectangular Plan Optimal Plan

1 .329 .357

2 .411 .435

3 .437 .465

4 .454 .487

5 .468 .505

-iII
-82 -
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CHAPTER IV

ARBITRARY DISCRETE-TIME TARGET MOTION

In this chapter we consider optimal search for a target with arbitrary motion

in discrete time. We discuss and give examples of a method for finding T-optimal

search plane under the following conditions:

(1) The target motion is modeled by a discrete time stochastic process
that can be simulated on a computer. This process may take place
in continuous or discrete space.

(2) At each time t, m(t) effort is to be applied to searching for the target.

(3) The detection function is exponential but may vary over space.

(4) A grid is specified and allocations are required to be uniform
V within the cells of the grid,

Observe that the class of allowable target motions is very broad. For example, the

target is not restricted to move among a set of cells as is usually the came when

one deals with Markov chain models of target motion (as, for exat.ple, in Chapter II).

The motion process need not be Markovian or even a mixture of Markovian processes.

The process can be Gaussian, a constrained diffusionor a random movement through

a network. In fact, the optimizer described here could be coupled with the COMPASS,

MEDSEARCH, or TARDIST programs to find optimal allocations of search effort over any

Interval of interest for any target motion processes produced by these programs.

The algorithm proceeds by obtaining a Monte Carlo sample of target paths and

then optimizing over that sample. Thus the accuracy of the optimization will be

S~-83 -



related to the accuracy with which the sample represents the target motion process.

in addition the algorithm considers only search allocations which, during any one

time period, are constant within the cells of a grid chosen by the user. However,

tbhlu restriction is not equivalent to assuming that the target motion takes place in

discrete space. The algorithm is based on the necessary and sufficient conditions

ctated in Chapter I.

While the algorithm described applies to a more general class of motion

processes than the one described in Chapter 11, it does, in effect, optimize over a

4 finite sample of thb target motion process, whereas the algorithm in Chapter U

treats the target motion exactly. Thus in the case where a mixture of a small number

of discrete time and space Markov processes provides a good representation of the

target motion, the algorithm in Chapter II will be more accurate and faster.

In the first section we give examples of optimal plans computed by the algorithm

which Is described in the second section. In the third section we prove the algorithm

converges to an optimal plan.

Examples

In thdi section we present three examples of optimal plans found using the

algorithm described in the second section,

Example 1: Radial flee from a normal distribution. For this example we as-

sume that the target has been detected by a sensor with poor localization so that

Its initial distribution is circular normal with standard deviation 20 miles in any

direction. The target is kni wn to be moving at 10 knots on a constant but unknown

course. We assume that the course is chosen from a uniform distribution on 0° to 360o.

-84-
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* This target motion Is an example of the classic fleeing target motion given in

J-reference (1 1. page 17. That reference gives the probability distribution Pt for the
target's location at time t given no search. In Chapter 7 of reference [i]

reasonable search plans are suggested for this problem but in the years since that

reference was prepared, no one has been able to find optimal plans for this problem.

We assume that the searcher, an aircraft, does not arrive on scene until

hour 4. The dete- -on function Is given by

-eWz//AO)

where z is the number of sonobuoy hours placed in the cell j and W = 270 (mi)2 /sono-

buoy-hour. This detection function approximates the probability of detection that

one obtains from search by sonobuoys and Is based on fitting an exponential function

to a simulation of submarine detections by sonobuoy fields as discussed in

reference [ r]. The constant W = 270 (mi)2 /3onobuoy-hour, corresponds to good

sonar conditions. We assume that 16 sonobuoys are available and that the search

continues for 4 hours. Because of the time required to place the sonobuoys in the

water, we assume that on the average only 16 x. 75 sonobuoys are available for each

hour of search. Since the constant W = 270 (mi)2 /sonobuoy-hour is the same over all

space, we shall simply absorb this into the effort available at each hour and assume

that there are 3240 units of effort available each hour. i

Table IV-1 shows the myopic search plan for this problem for hours 4 through 7.

The target distributions shown for each hour are the distributions at that time given

failure of the previous search effort to detect the target. Observe that at time 4

the myopic allocation concentrates Its effort most heavily in the center cells of the

S-_85-



TAPLE IV-1

RADIAL FLEE FROM A NORMAL DISTRIBUTION

Myopic Plan -- Hour 4

TARGET DIST;? NUT IoN

NOTE$ ENTRIES 1AVE BEEN MULTIPLIED BY 104

0 0 0 0 2 6 1 I 0 0
i -0 1 2 23 32 35 2N-0 5 43 113 209 196 122 39 7 0

2 21 129 281l 452 408 313 117 25 2

S00 _4 39 200 406 524 531 447 205 34 212 40 21I0 395 50-9 531 425 182 29 5

2 23 128 315 458 425 271 128 19 0
1Os 0 3 39 109 216 200 113 46 9 10 0 7 24 40 43 30 8 0 0

10 01 0 2 2 3 3 0OO 0

1 w I' E

MYOPIC ALLoCATION

52 24' 1201 95
0o 199 30s 307 218

Id8 290 307 218

98 248 218 38

10

,'ROLUAUILIfY OF DETECTION BY TiE END OF TIME 4 0.274
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1l TABLE IV-1

Myopic Plan -- Hour 5

TARGET DISTR IBUTION

NOTEI ENTRIES HAVE BEEN MULTIPLIED BY 104

0 0 0 4 6 10 8 7 1 0 0 0

10 N - 0 0 2 9 52 74 77 44 12 2 0 0
"0 0 19 8.1 142 205 194 16C 74 22 .4 0
0 5 55 155 215 164 182 205 156 54 5 0

S00- 1 14 80 190 182 125 128 18.6 191 75 9 0
S0 11 8i 193 166 1'32 12-7 182'212 65 "12 1

0 6 60 164 199 185 186 205 153 45 0 I
0 0 I 15 77 161 216 198 155 75 27 1 0

°s 0 0 0 18 55 -15 92 40 19 I o 0
0 0 0O1 2. 6 9t 7 10 1 •0 0 0

low 1 E

MYOPIC ALLOCATION

0 16 164 142 64 0
52 182 121 115 164 54

00 133 117 0 0 124 136
141 84 o o 117 176

14 152 123 125 164 46
0 68 1t14 149 51 0

101

i eOR(W3ABILITY OF DETECTION HY THE END OF TIME 5 - 0.406
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TABLE IV-L (j2on tin ued)

Myopic Plan -- Hour 6

TARGET DISTRIBUTION

NOTEI ENTNIES HAVE BEEN MULTIPLIED BY 10 4

o 0 0 0 0 2 4 2 0 0 0 o
0 0 1 8 17 21 20 17 6 2 0 0

1°oN 0 9 38 79 118 100 87 36 7 4 0
0 8 45 96 139 102 114 105 104 50 7 0

2 15 89 124 95 91 89 106 117 80 13 2

0o 2 30 I11 110 86 61 60 92 101 106 22 I
2 23 116 119 85 58 54 93 119 101 26 3
I 20 94 132 93 84 96 97 117 70 16 I

O 0 3 35 96 134 112 118 124 110 41 7 I
0 0 14 43 73 103 102 71 44 14 0 0

0 0 0 7 23 30 33 20 6 2 0 0
0 0 O 0 2 2 1 1 Ol 0 0 0

low 00 1°E

MYOPIC ALLOCATION

ION -- 0 0 0 123 56 0 0 0
0 41 189 64 110 77 72 0

II 143 38 20 13 83 122 0
o 99 94 0 0 0 25 62 81
° 116 128 0 0 0 30129 62

31 170 28 0 41 46 121 0

lOs 0 41 174 104 124 142 95 0
0 0 0 69 65 0 0 0
1°W 0 1°E

PkOdAtiILITY OF DETECTION BY THE END OF TIME 6 = 0.4•6
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TABLE IV-l (Continued)

Myopic Plan -- Hour 7

TARGET DISTPIBUTION

NOTE' ENERIES HAVE BEEN MULTIPLIED BY 105

0 0 10 30 40 90 50 /0 0 10 0 0 0
0 0 0 250 282 494 416 415 190 30 10 0 0
0 60 236 590 830 826 784 846 628 280 70 0 0

1-N 20 159 746 803 707 /b2 681 1;8 825 678 210 10 0
60 422 802 185 644 558 517 649 654 805 369 50 0

0oo 90 ,07 135 -104 520 181 211 531 178 776 429 80 0
100 510 830 692 501 167 179 528 687 792 545 90 10

40 381 (29 199 597 526 543 616 706 133 339 30 0
Ps 10 235 733 769 662 7v2 6(3 (29 845 610 190 10 0

0 10 206 657 768 dd3 811 836 560 370 60 0 0
0 0 60 120 491 401 556 374 200 30 0 0 0
0 0 0 10 70 /0 90 60 10i 0 0 0 0

l o w 0 1OE 21EE

MYOP IC ALLOCAT ION

0 0 117 115 94 125 5 0
I°N 14 104 53 17 38 5Q 114 36

103 95 15 0 0 18 22 105

0o 68 51 0 0 0 0 91 90
117 44 0 0 0 0 41 98
65 102 0 0 0 0 52 67

o 67 86 26 98 45 65 124 0
!S 0i 23 86 141 108 120 0t 0

loW 0f t°E

PROL3ABILITY (OF DETECTION BY THE END OFL TIME 7 = 0.543

I
-89
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target distribution, but at times 5 through 7 effort is concentrated In an annulus

centered at the mean of the target distribution. Except for variations caused by

sampling error in the underlying target distribution, the effort distribution is seen

to be fairly symmetric, Table IV-2 shows the optimal plan for this example. For

hours 4-7 the cells in which the optimal plan places a larger amount of effort than

the myopic plan are Indicated by shading. Notice that the optimal plan places sub-

stantially more (e. g., 51 percent more) effort in the center four cells at hour 4 than

the myopic plan. At times 5-7 the optimal plan appears to be more concentrated

than the myopic plan. In addition one can see that at time 5, the optimal plan chooses

to allocate effort heavily to the eastern side of the distribution and then balances this

by heavt, allocations on the western side at times 6 and 7.

Although the optimal plan is qualitatively quite different from the myopic plan,

one can see from Table IV-3 that there is very little difference in the detection

probabilities from these two plans.

Example 2: Radial flee from a uniform distribution. in this example the

search assumptions are exactly as in Example 1 except that the target's initial

distribution is uniform over a square 80 miles on a side. Table IV-4 shows the

myopic plan and Table IV-5 shows the optimal plan for this example.

Since the initial distribution is uniform rather than normal, one might have

expected that both the optimal and myopic plans would stop searching in the center

r of the distribution earlier than in Example 1. However, by comparing the myopic

and optimal allocations at time 5 for this example to those in the previous example,

one can see that both plans and in particular the optimal plan continue to search

the center of the distribution longer when the Initial 'distributlon is uniform than

-90-
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TABLE IV-2

* RADIAL FLEE FROM A NORMAL DISTRIBUTION

Optimal Plan -- Hour 4

Note: Shading indicates the cells in which the optimal plan places

more effort than the myopic plan.

TARGET I)ISTRIBUTION

NOTEa ENTR1ES HiAVE BEEN MULTIPLIED BY 104

J

0 0 0 0 2 6 I I 0 0
O 0 I 2 23 32 35 21 5 0 0

(0 5 43 113 209 196 122 39 7 0

2 21 129 281 452 408 313 117 25 2
0o 4 39 200 406 524 531 447 205 34 2

2 40 210 395 509 531 425 182 29 5
2 23 128 315 458 425 21/ 128 19 0

10S 0 3 39 109 216 200 113 46 9 1
0 0 7 24 40 43 30 8 0 0

LO 0p 0 2 2 3 3 o, 0 0

low 00 10 E

OPTIMAL ALLOCATION

0 7
0 152EM M 218

28M&W1 66
0 153. 1o51 0

P;)OBABILITY OF DETECTION ýJY VIE END OF TIME 4 0.265

*

1
I ~-91 -



I.TABLE IV-2 (Continued)

Optimal Plan -- Hour 5

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan.

TARGET DISTRIBUTION

NOTE1 ENTRIES HAVE BEEN MULTIPLIED BY 10O

0 0 0 4 6 10 8 7 I 0 0 0

10N" 0 0 2 9 52 14 17 44 12 2 0 0
"0 0 19 813 150 213 !99 163 75 22 4 0
0 5 55 163 237 176 1/4 214 160 54 5 0

00 o 1 14 80 199 1 d/ 90 94 173 195 75 9 0
S0 11 8•1 201 170 90 90 181 222 6 12
0 6 60 177 243 196 192 225 159 45 0 I

los 0 1 15 81 183 235 213 162 16 27 I 0
0 0 0 18 55 75 92 40 19 1 0 0

0 0 0 2 6 9, 7 10 1 10 0 0

low o O1E

OPTIMAL ALLOCATION

ai

0 0 75 1833 019 A,4/1,kW '1/",1K',5 , /

0 0 --- 5. 0 0, 167

-92 -



TABLE IV-2 Vinued)_

Optimal Pihin -- Hour 6

Note: Shading indicates the cells in which the optimal plan allocates
more effort than the myopic plan.

TARGET DISTRIBUTION

NOTE, ENTRIES HAVE 3EEN MULTIPLIED BY 104

0 0 0 0 0 2 -4 2 0 0 0 0
0 0 I 8 17 21 20 17 6 2 0 0

10  0 I 9 38 83 131 105 80 35 7 4 0
0 8 46 105 157 115 119 93 98 49 7 0
2 15 94 146 b7 65 65 83 107 15 13 2

oo0 2 30 128 135 67 44 43 63 94 103 22 I
2 23 137 164 63 42 39 68 123 102 26 3
I 20 102 169 94 62 70 86 118 68 16 I

.o 0 3 36 113 114 153 157 138 112 41 "1 1
0 0 14 44 76 124 121 74 44 14 0 0
0 0 0 1 23 30 33 20 6 2 0 0
0 0 0 0 2 21 I I 0 0 0 0

0 1

OPTIMAL ALLOCATION

0oN -- 0 0 0 117 45 0 0 0
0 34 4 Z, /1 I = 19 58 0

0 130 0 0 0 14 90 0
o 25751 0 53 75

2 19, 9 0 0 0 0 0

4,. 6o :,2'rj_3 02t 0 0

29W 0 3 0 1 0

P-o,3ABILITY OF DETECTION BY THE END OF TIME 6 = 0.488

I
I -93-
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TABLE IV-2 (Continued)

Optimal Plan -- Hour 7

Note: Shading indicates the cells in which the optimal plan allocates
more effort than the myopic plan.

TARGET DISTRIBUTION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10

0 n I 3 4 9 5 7 0 I 0 0 0
0 0 0 25 28 50 42 42 19 3 I 0 0

10°N- 0 6 24 61 93 102 89 83 59 28 7 0 0
2 16 79 93 75 64 58 69 79 66 21 I 0
6 43 95 U5 54 41 38 52 61 17 37 5 0
9 49 88 60 39 15 17 39 64 76 43 8 0I00 ) 50 109 61 36 14 13 40 58 80 54 9 I
4 37 d6 dO 47 38 41 51 70 73 34 3 0

s I 23 76 86 67 69 62 76 88 60 19 1 0
0 I 20 67 87 125I 10 96 58 37 6 0 0
0 0 6 12 50 42 57 38 20 3 0 0 0
0 0 0 I 7 7 9 6 1 0 0 0 o)

loW 00 l 0 E

OPTIMAL ALLOCATIOrN

1 N 0°/14-6/ 57 0 26 81 6

°° 0_ 6 1 o41 0 0 01 0 0 0 66
"06, 0 0 -g• 0 0 o60 46

l°S 64 ,I,1• I .5 26 0 66 120 0
0 . I I 'II,bd ,26-3, t"7/,,4,-," o o

low 06I 1 0E

Pq0()r3A3ILITY OF DETECTIoN 13Y THE END OF TI4E / 0.551
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TABLE IV-3

PROBABILITY OF DETECTION FOR OPTIMAL AND MYOPIC PLANS
FOR RADIAL FLEE FROM A NORMAL DISTRIBUTION

PRO13ABILITY OF DETECTION

HOUR OPTIMAL MYOPIC
1 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0.265 0.274'
5 0.395 0.406

6 0.4b8 0.486
"7 0. 551 0.543

1
; / -95-
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TABLE IV-4

RADIAL FLEE FROM A UNIFORM DISTRIBUTION

Myopic Plan -- Hour 4

AkROET L)JSTR IBUTION

NOTE, ENTRIES HAVE BEEN MULTIPLIED BY 10 4

0 d 25 53 13 41 5 0

1°N 16 93 157 226 248 163 80 15

44 141 195 322 328 231 173 30

00_ 55 218 365 522 520 33d 227 66
48 28 343- 5153 344 188 61
51 155 213 331 395 245 149 44 j

lo 13 72 173 245 225 153 92 15o.• 12 42 50 59 54 12 0

.1lo0w 01 10E

MYOPIC ALLOCATION

0 0 23 61 0 0
4 0 165 172 32 0
9 215 35d 35?1 1d4 25
0 I00 350 351 191 0
0 0 176 24/ 56 0
0 0 56122 0 0

SrRodAbILITY OF DETECTION BY THE END OF rIME 4 - 0.243

i9



TABLE IV-4 -Continued)

Myopic Plan -- Hour 5

TARGET fDISTRIBUTION

NOTE# ENTRIES HAVE dEEN MULTIPLIED BY l04

1o. . 10 44 13 124 154 104 30 6
52 83 152 183 165 141 116 42

d5 137 .147 161 152 162 160 93
00, lid 166 154 14d 146 160 168 121

116 186 156 156 152 157 165 129
106 144 149 157 151 164 144 85

los . 42 99 161 Id9 159 156 109 54
2t 44 93 124 132 94 28, 5

1w 0D E

MYOPIC ALLOCATION

ION 0 0 I d9 0 0 00 83 156 115 54 0 0

42 10 107 84 10d 103 0
o _ .119 V7 13 66 105 123 0

164 94 95 84 96 115 16

60 /16 97 8l 113 63 0

lO 0 106111 101 95 0 0
S0 o 3 r25 0 0 0DloEl

PROdAUILLITY OF DETECTION BY THE END OF TIME 5 , 0.358

I I

: " I I• "• I I I I I ll .. .. ....- 97 - ."



TABLE IV-4 (Continued)

Myopic Plan -- Hour 6

TAROET DISTRIMUTI)N

ROTEs ENTRIES HAVE BEEN MULTIPLIED BY 104

0 I 7 19 41 53 35 8 0 0
iN 0 3d 66 94 126 112 108 65 22 1II 59 100 99 95 101 103 103 72 12

3d: 9.5 98 95 82 88 94 111I 96 29
,o J4 III 1I0 92 67 73 81 88 1 3$0 8

"3d I10 9d 74 73 73 83 94 11$ 50
40 107 101 90 80 87 93 105 86 33

IlOS. 12 62 109 108 102 95 101 109 89 Id
0 27 64 93 12d I11 85 66 24 2o0 I 10 33 41 44 44 / I 0

loW 0 o 10 E

MYOP IC ALLOCAT ION

0 0 45 161 113 100 0 0
0 70 66 49 73 83 81 0

51 61 49 0 I1 45 112 54
0o -1312 _3 4 0 0 0 1 d 175

107 61 o o o 0 46 134
96 71 290 13 38 90 8

1 OS 0 103 99 78 51 75 104 22
O i 0. 42 16d 135 -.4 0 I 0

1l0W 00 1°E

,.'ll()ABILITY OF D)ETECTION BIY T14E END OF rI'IE 6 • 0,435
4~-98

, -gS- 2:



* TABLE IV- 4 (Lontinued)

Myopic Plan -- Hour 7

TARGET DISTRIBUTION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 1o5

0 70 299 482 143 959 679 343 50 0
I50 522 700 864 635 719 749 729 540 100
325 613 744 721 709 632 643 646 754 312
704 7817 656 /27 576 533 197 762 615 640

00-1d13 618 672 516 214 241 556 720 728 771
616 105 634 542 2,19 227 518 605 117 827
747 819 706 767 502 626 749 765 783 649

1.08 344 160 69/ 749 596 615 774 670 697 435
00 466 695 161 141 612 775 751 591 1080 701410 55/ 769 d39 151 280, 90 0

low 10E

MYOPIC ALLOCATION

0 0 0 0 66 168 30 0 0 0
1 0 0 0 42 126 3 53 69 58 0 0

0 0 66 54 41 I d 10 71 0
44 d8 16 57 0 0 94 75 0 6

0 102 0 25 0 0 0 0 53 5/ 80
3 45 2 0 0 0 0 T 51 N-

68 10'. 45 Id 0 0 69 77 7 I I
o ,) 75 40 69 0 0 82 24 40 0

S0 0 39 75 65 0 83 70 0 0
0 O 0 0 80 114 70 0 0 0

1 0ow 00 1°ZE

P;ROdABILITY OF DETECTION BY THE END OF TIME 7 * 0.492

Iy
¶ 99



TAB.LE IV-5

RADIAL FLEE FROM A UNIFORM DISTRIBUTION

i"' 
Optimal Plan -- Hour 4

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan.

TARGET DISTRIBUTION 1
NOTE$ ENTRIES HAVE BEEN MULTIPLIED BY 10 .

0 6 25 53 73 47 5 0
'°1 16 93 157 226 248 163 60 15

44 141 195 322 328 231 1/3 30

09 55 218 365 522 520 338 227 66
48 208 343 511 513 344 188 61
51 155 213 331 395 245 149 44

los 13 72 173 245 225 153 92 15
04 J2 42 50 50 54 12 , 0

1lw 0 1°E0

•4

SI,•

OPTIMAL ALLOCATION
t 

-i

0 0 0 4 0

1 2

00

! :I

PI-ROBA1ILITY OF DETECTION BY THE END OF rIME 4 * 0.242

-100-
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TABLE IV-5 L{Con11 tinue dŽ

Optimal Plan -- Hour 5

Note: Shading indicates the cells in which the optimal plan places

more effort than the myopic plan.

TARGET DISrRII3UTION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10

I

0 10 44 14 129 164 106 30 6

1°N 52 83 153 190 178 148 117 42

85 137 144 154 146 168 166 93

00 119 166 144 131 129 155 174 125
116 185 148I-39 135 152 166 129
106 143 148 154 147 174 150 85

42 99 165 206 167 163 110 54
los 2 44 94 134 136 94 28 5I , i

]LOW 0 P°E-
o 1 0 E

OPTIMAL ALLOCATION

00 98 37/ 2 197"1 8

0 47 98 55 84 0

00

SPiBAOILITY OF DETECTION BY THE END OF TIE 5= 0.351

Sg -101-
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TABLE IV- L__C on tI nu ed

Optimal Plan -- Hour 6

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan.

TARGET DISTRIBUTION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 104

0 I 7 19 41 65 35 8 0 0
0 3d 66 99 144 144 122 66 22 I

II 5d 100 101 98 .106 120 109 73 12
38 94 92 80 66 71 84 120 100 29

00 34 121 99 74 52 57 65 89 143 38
38 114 97 60 57 5/ 66 9d 129 52
40 114 110 82 66 71 82 113 89 33

-- 12 63 116 123 1II 101 IiO 115 89 18
i'S 0 27 65 104 15.3 136 89 66 24 2

0 0 1 0 33 41 46 44 / I 0
0 0

l°W 0 l°E

OPTIMAL ALLOCATION

0 0 4F1'8 7I f l- 0 0
i°N ) 69 21 I

31 31 6 0 0 21
0o :89 0 0 0 0 V25"174

00 I 59 0 0 0 040101
4J 57 0 0 0 0V 5/i~ )100 /) 9,0 6 14 5SOs , - -) ) 58 50

.a 0 -5dZ84I/l5, 0 0

loW 0 10 E

-'R(0dALILIT ')F DETECTION dY THE END OF rIME 6 0.435

-102-
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I TABLE IV-5 ,LContinu ed)

Optimal Plan -- Hour 7

. Note: Shading indicates the cells iW which the optimal plan places
more effort than the myopic plan.

TARGET DISTRIBUTION

NOTE$ ENTIIES HAVE BEEN MULTIPLIED BY 104

7) 7 30 51 /8 119 71 34 5 0

10N 15 52 74 104 13 83 86 74 53 10
33 61 75 72 62 55 62 64 14 31
72 dl 63 65 45 43 68 73 62 61

00 di 63 59 42 17 19 44 63 8I 79
61 75 56 43 17 18 41 53 86 89
/9 98 /2 66 39 50 65 76 87 66

0o 35 83 78 77 52 54 79 68 67 41
1S 9 47 75 90 87 1I 87 76 57 10

0 7 41 55 80 89 77 28 9 0

low 00 PoE

OPTIMAL ALLOCATION

0 0 0 0 23 3 0 0 01

1n 0 0.49 35 f7 51 0 0
0 .) 54 36 0 0 0 0 47 0

38 IS3 0 0 0 0 16 40 0
008 5 0 0 0 0 0 0 73

0 0I.0 0 0 0 3 0

o 0 0 1"/570 0

0 0. 0 Tl 63 0 0 0

i0 W 00 :10E,

.dROI3ABILITY OF DETECTION BY THE END OF rIME 1 * 0.496

i1
. ~-103--
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when it is normal. Table IV-6 showb tJat again there is surprisingly little dif-

ference between the detection probabilities for the myopic aZd optimal plans.

*! Example 3: Two-scenario target motion. In this exampie the target's initial

distribution at the beginning of hour 1 is circular normal with standard deviation

10 miles in any direction. There are two possible scenarios for the target's motion;

both are equally likely. For scenario 1 the target is assumed to be traveling at a

speed uniformly distributed betweeui, 15 and 20 knots. The target's course is

uniformly distributed between 150 and 2100. The target maintains a constant course

and speed chosen from these distributions until hour 5 when it makes an independent -

draw from a distribution on speed which is uniform from 10-20 knots and an in-

dependent choice of course from a distribution which is uniform from 120-240°.

The target continues at this course and speed for the remainder of the problem.

In scenario 2 the target is assumed to be traveling at 15 knots and to make a

draw from a truncated triangular distribution (see Figure 11-1) with mean course

750, maximum course 105 , best course 90", and weight factor 2. The target main-

tains this course and speed until time 5 when it makes an irn.ependent draw from the

same distribution. It retains this course and speed for the remainder of the problem.

At in the first two examples, we have 4 hours of VP search available beginning

at hour 4 and we wish to maximize the probability of detection by the end of hour 7.

The detection assumptions are similar to those which are discussed in Example 1.

However, the sonar conditions vary from good (W=200) to very poor (W=25) in the

manner shown in Figure IV-1. As before we assume that there are 12 sonobuoy

hours available per hour for each time period.

-104-



TABLE IV-6

PRC3ABILITY OF DETECTION FOH THE OPTIMAL AND MYOPIC PLANS
FOR RADIAL FLEE FROM A UNIFORM DISTRIWUTION

PROBABILITY OF DETECTION

HOUR OPTIMAL MYOPIC
I 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0.242 0.243
5 0.351 0.358
6 0.435 0.435
"-1 0.496 0.492

I

FIGURE IV-1

SONAR REGIONS FOR EXAMPLE 3

W =100 W 200

60 20' S

0

is 
W 2 I

iii
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Tables IV-7 and IV-8 show the myopic and optimal plans for this example.

At hours 4 and 5 the myopic plan concentrates its effort on scenario 2, the east-

ward moving one. This is because most of its probability mass is located in areas

of relatively good sonar conditions. Even though by hours 6 and 7 the first or

south moving scenario has distinctly the higher probability gi-ien failure to detect

during hours 4 and 5, the myopic plan contip-as to allocate most of the effort to

scenario 2 because scenario I has now moved into the very poor sonar region. By

contrast the optimal plan concentrates heavily on scenario 1 during hours 4 and 5 be-

fore that scenario moves into the region of poor sonar conditions. Then during hours 6

and 7 the optimal plan searches scenario 2 which has moved into a better sonar region.

Table IV-9 shows the detection probabilities for the optimal and myopic plan.

Observe that at hour 4 the myopic plan has a substantially higher detection probability

than the optimal plan but that by hour 7 the optimal plan has detection probability. 58

versus . 48 for the myopic, an increase of 19 per:cnrt over the mycopic plan.

Smoothing. In the above examples a Moute Carlo s.multion of 10, c00 sample

paths was used to represent the target irotio-i process. Even with this rather large

number of replications, the target location distributions still have considerable

statistical variation. This indicates that a smoothing technique such as the one

examined in reference [s ] might be helpful. It is planned to investigate this

possibility in future work.

1
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TAB.E IV-7

TWO SCENARIO EXAMPLE
-!4-

Myopic Plan -- Hour 4

TARGET DISTRIt3U'fI(N

NOTES ENTRIES HAVE 8EEN MULTIPLIED BY lo3

0 0 0 0 6 14 I
0o 0 0 0 I 16 137 14

0 0 ! 1 72 141 13
1 16 28 28 23 13 1

S2 48 110 110 46 3 0
S-S 0 11 31 31 12 0 0

o0 0 03 0 0 01 0

MYOPIC ALLOCATION

NOTE: ENTRIES HAVE BEEN MULTIPLIED BY io2

0o 0 0 156 393
0 0 137 405

0) 0 0 0
L53 156 0 0

00

$ IPR(dALILIrY OF DETECTION dY THE END OF TIME 4 = 0.235

10

II

1 -107-
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TABLE IV-? LColuedi

Myopic Plan -- Hour 5

TARGET DISTRIBUTION

NOTE$ ENTRIES HAVE BEEN MULTIPLIED BY 103

0 0 0 0 0 3 98 114 3

0o 0 0 0 0 0 43 644 443 48
0 0 )0 0 36-651 436 47
0 6 24 42 26 31 110 109 3
0 48 353 570 576 337 45 0 0

s I 37 371 836 831 380 40 0 0
0 3, 39 III 108 40 4 0 I 0

low 0 0°E

MYOPIC ALLOCATION

NOTE$ ENTRIES HAVE BEEN MULTIPLIED BY 102

6o 0 0 0 338 233

0 0 0 0 0
24 32 0 0 0

lR0L3AuILIrY ()F DETECTION OY THE END OF TIME 5 - 0.374

S~-108--
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STABLE I V-7 LContinued2

Myopic Plan-- Hour 6

TARGET DISTRIBUTION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 104

0 0 0 0 0 0 0 I 0 0o 0 0 0 0 0 22 116 72 I00- 0 0 0 0 0 1 74 306 119 130 0 0 0 C 0 0 72 300 125 16
0 2 I 4 4 3 17 124 67 0los I 53 105 134 13d 97 37 3 0 01I0 165 424 653 684 435 133 II 0 0
5 50 279 450 472 261 57 7 0 0
04 I5 27 4d 33 22 0 _ 0 0

lo 0 1 1lw oo tE

MYOPIC ALLOCATION

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 102

0 0 0 0 8a 0- 0o_ 0 0 -0 0 282 92
0 0-d 0 Y2-7d 103-
"0 0 0 0 0 0
0 0 0 0 0 0

108 141 216 0 0,, 0 I
)o PE

PROB)ABILITY OF DETECTION BY THE END OF TIME 6 - 0.447

-109-



TABLE IV-7 (Continued)

: Myopic Plan -- Hour 7

TARGET DISTRIBUrION

NOTES ENTRIES HAVE BEEN MULTIPLIED BY 104

o 0 0 0 0 0 0 0 I 4 0 0
0 0 0 0 0 0 0 I 28 91 36 0

0 o 0 0 0 0 0 0 0 1 97 90 63 2
o 0 0 "o 0 0 1 ) I U3 93 63 U
0 0 I 1 0 0 0 1 44 119 33 1

lS O 0 6 20 21 25 26 30 20 5 1 1 0
1 45 143 207 248 227 212 148 43 0 0 0
6 43 219 386 491 481 394 210 39 2 0 0

2 0  0 6 52 186 227 231 138 45 a 0 0 0
0 0, 3 15 18 18 I10 0 _0 0 0-, 0

low 0 10 E 20 E

MYOPIC ALLOCATION

NOTE, ENTRIES HAVE BEEN MULTIPLIED BY -02

0 0 0 0 115 0
00 0 0 0 0 128s 112 420 0 0 0 95 IN9 42

o o 0 0 0 0 0

Jos 0 0 0 0 0 0 0
0 0 0 0 0 0 0

291 256 0 0 0 0 0
10E

0 o

PRO•AIILITY OF DETECTION IJY THE END OF TIME 7 - 0.485

-io



TABLE IV-S

TWO SCENARIO EXAMPLE

Optimal Plan -- Hour 4

TAROET DISTRIBUTION

3
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 1O

0 0 0 0 6 14 1
0°_ 0 0 0 I 16 137 14

0 0~ 1 1 12 141 13
I 16 2d 2d 23 13 I

0o8 2 48 110 110 46 3 0
0 II 37 31 12 0 0
O 0 01 0 0 0 0

1 0
00 1 E

oPTIMAL ALLOCATI)ON

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY i02

0 l 590 610

00

PRORBABILITY OF DETECTION BY THE END OF TIME 4 0 0. 116

07 -
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1kTABLE IV . 8 LCiontifnlued)

Optimal Pln -- Hour 5

TAROET DISTRIBUTION
L3

NOTEs ENTiIES HAVE BEEN MULTIPLIED BY 1

0 0 0 0 0 0 10 13 0
o 0 0 0 0 0 6 113 101 5

o V 0, .1U 3= 104 5
0 I 2 4 3 3 12 12 0

ios 0 5 31 43 43 30 4 0 0
is 0 4 32 57 55 34 4 0 0

1 0 4 0

oW o0 IE

OPTIMAL ALLOCATION

NOTES ENTRIES HAVE BEEN MULTIPLIED BY 1O2

0 0 0 0 0f 127
a 3 C 0 0164
0 0 C)0 a)

100 3443 34dg 57 0 0

0' I

i'R08ABILITY OF DETECTION 8Y THE END OF TIME 5 - 0.260

....... . . .. ., ... ._.-......-. , ; ' • I , , , , , ,



TABLE IV-8 f.S2o..utinued

Optimal Plan -- Hour 6

I

TARGET D ISTR IBUTION

NoTEs ENTRIES HAVE BEEN MULTIPLIED BY 103

o 0 0 0 0 0 0 0 0 0
0 0 0 0 ) 0 2 15 l 0Oo J 0 0 0 0 0 o 17 124 33 I
0 0 0 0 0 0 17 "11 30) -0 0 0 0 0 0 2 15 a o

lO_ __ 0 5 8 10 10 8 4 0 0 0
1 I 15 27 37 38 30 12 I 0 00 5 23 33 36 23 5 1 0 0
0 o 0___33 2 0o 0 0 0

lOw o l0E

OPTI MAL ALLOCATION

NoTE, ENTRIES HAVE BEEN MULTIPLIED BY 1O2

I 22 0

PH(8A8I1LITY OF DETECTION 3Y T'HE END OF TIME 6 u 0.606
4,

I

-113-
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TABLE IV- L jontinuedl

Optimal Plan -- Hour 7

TARGET DISTqIbUJTION
NOTE, ENTRIES HAVE BEEN MULTIPLIEi, JY 104

0 0 0 0 0 0 0 0 I 4 0 0
0 0 0 0 0 0 ( I 41 154 38 0

0o 0 0 0 0 0 0 0 1 218 237 63 2
0 0 0 0 0 0 0 V 189 214 60 0
0 0 1 1 O' 0 0 1 59 153 36 I

1Os0 0 6 I0 18 21 24 26 19 5 .1 3 0
I 42 106 122 163 147 125 108 40 0 0 0
6 39 167 276 338 341 287 165 37 I 0 0

20S 0 6 49 154 171 182 137 42 8 0 0 0
0 0, 3 15 18 18 I0 0, 0 0 0 01I I

1o W 00 10 E 20 E

OPTIMAL ALLOCATION

NOTE: ENTRIES HAVE bEEN MULTIPLIED BY 102

0 186 0

00 255 272 8226 252 "{

1°1E

P-POIJAOILITY OF DETECTION 6Y TIHE END OF TIME 7 f 0.577
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TABLE IV-9

PROBABILITY OF DETECTION FOR OPTIMAL AND MYOPIC PLANS
FOR TWO SCENARIO EXAMPLE

PROBABILITY OF DETECTION

HOUR OPTIMAL MYOPIC
I 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0.116 0.235
5 0.256 0.374
6 0.506 0.447
1 0.577 0.485

I
j

~1

I .
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Description of the Algorithm

We suppose that we are given N sample paths drawn from the process

th n n n
{ Xt; t = 1, ... , T}. The n sample path is assumed to have the form (x1 x2 XT)' wn,

where x n is the position of the target at time s in the nth sample path and w is the
s n

th
sample probability that the n sample path represents the target's actual path (usually

w = 1/N).
n

Conceptually the first act of the optimizer is to convert the sample paths into

th
sequences of cell numbers. Thus, the n sample path becomes

n n n
01 , * J2 T, W n

where = c(x) is the index of the cell into which X falls.
S s

As in the third section of Chapter II we define the function t which acts on a

search plan € by replacing the allocation at time t, 0 (. , t), with f*, an optimal allocation

of m(t) effort for g , t), the posterior target distribution at time t given failure to detect

at all times other than t using P. That is

0(j,s) for sat,

t f*0) for s t.

First pass. Set *0 (J,t) 0 forjcJ, t= 1, ... , T. Webeginwitht=1. For

neach cell J we accumulate all the probabilities, wn, of paths such that Jl = J to compute

p1 (), the probability that the target is in cell J at time 1 for j = 1, ... , J. That is

pl)= Wn (IV-

Using a standard algorithm (e. g., the algorithm in Example 2.2.8 of reference (h),

we calculate the allocation of effort f* which maximizes the probability of detection,
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J= 1p 1 - exp(WO) f*0)/A (

for a stationary target with probability p1(0' of being in cell j for j=1, ... ,

1 subject to

J=j~l f*(J) = re(t). (Wv-3)

Let 0 1 = V1 00 and compute

Sw = wexp (-W01I( 1 01)/A) for n =1, ... , N. (IV-4)

th
The value wn is the probability that the target is following the n sample path and is

not detected by the search effort at time 1.

For t= 2, we compute g, 1(j, 2), the probability that the target is in cell j at time 2

and not detected by the search applied at time 1 by

••0,2) = 2 wn for J = 1, ... , J. (IV-5)

01 ~n:j A= j )

Let 1(, 2) be the probability distribution that one obtains by normalizing (,2)
S1

"- so that It sums to 1. As above we find an optimal allocation of m(2) effort for the

stationary target problem with distribution g (, 2), and let 2 = Z2 0 1. The weights

w are then multiplied by exp(-W 2 , 2)/Ad2)) to obtain the revised values

of wn for n= ... , N.

This process Is continued for t=3, ... , T. At the end of this first pass we have

1 calculated the myopic plan, OT' i.e., the plan which at each time period allocates its

effort to maximize the probability of detection during that time period given faillu

to detect the target in pievious time periods.
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Secon s Let wI be the value of wn obtained by the end of the first pass
- n

described above, i. e., w1 Is the probability that the target Is following the nth
n

sample path and iA not detected by the effort allocated in the first pass. For

we calculate

A 1 wImexp (1J )/A for n = l, ... , N,

a U' OTt I ~l

and accumulate W^, into cel it to calculate gO T, a 1), the probability that the target

is In cell J at time 1 given failure to detect at all times In the future. Generally

ptggOT(., 1).

We then find an optimal allocation of m(l) effort for the distribution goT(., 1),

set • TI= and compute new values for w.n by
T 1 - T o - A Wo n) 0  n

w a = w n e p1 T 1 1 , 1 ,/ A 1?

nI

For t = 2 we calculate

=Wexp 0 1"W/AAn IU n-2

and repeat the above process for time 2. This continues for t= 3, .. ,, T and the

second pass is completed. Additional passes proceed in a similar fashion,

Observe that at the end of the 1th pass

N-1- PTIO IT = n=E wn, OV.8)

and that I -PT[PT' is monotonically decreasing In 1. We shall show in the

third section that as I - c, there is a oonvergent subsequence of plans c c l such

that40*(J,t) -0Urm ID lT o,t) existsforJ=l, J .. , Jandt=1, ... , Tandsuchthat
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* Is T-optimal. Furthermore,

• 1 111nLl PT[O/T I PT[OW]. (IV-7)II
Thus one can come as close to the optimal plan as he wishes by makiig enough

passes. For computational purposes, one usually chooses an e > 0 and stops when

l PTI[IT]'PT[O(I-1)14,c

The computer program which Implements this algorithm is described in reference [g]. ]

Proof of Convergence

In this section we take the point of view that a search plan 4 is a density definedI ' on Y x { 1, ... , T) where Y is the plane. Then *(m) becomes the claso of plans 4'

such that lI
f 0(y,t)dy=m(t) fort= 1, ... ,T.
YI

The search plans that we consider in this chapter are a subclass i(m) of +,(m) in

which the effort density is constant over the grid cells. Thus we can identify a

I plan 0 obtained in the above algorithm with a member c $(m) as follows: Let

c(y) be the cell containing the point y. Then

(yt) = *(c(y),t) for y cY, t= 1, .. ,T.

A(c(y))

In order to show that the above algorithm converges to a plan 4 * *(zn) (underI
the above Identification) such that

IPT1¶*1 =max{ PT'1 OE (m))



we first find necessary and sufficient conditions for ** c *(m) to be T-optimnal

within * (m), i.e., for 0* to satisfy the above equality. For this proof we shall

"begin by taking the point of view that there is a regular detection function b (I. e.,

b has a positive continuous and strictly decreasing derivative b') such that 8
b ( T (Xt(w), t)) Is the probability of detecting the target given it follows the

path w. Similarly
i

PT,0] = E[býT 0 (Xtl(W), t))].

Let F be the set of real-valued Borel functions defined on Y x { 1, ... , T}

such that

fy I f C,,t) ldy < o for t =,...., T, !

Ilfil E est sup If(yt)I < .
t=1 yeY

Let

= ~f F ~,t)is constant over each cell in the~
grid for tlme t, t = 1, ... T

AF = { f F F :f(y,t) > 0 for y E Y, t = 1, ., T).

In Chapter V1 we show that Pý[O,h], the Gateanx differential of P at 0 in the

direction h, Is given by

T
P•oh] = MT fy Eyt[bl(s= 0 (X s ' s)] Pt(y) h~, t)dy for ' c F', hE K(O). (IV-8)

Let p 0) be the region in Y which comprises the jth cell, and let
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T Jt) fp O EYt b ( C s ,6 pt(Y)dy for 4E J, t = 1, .. ,T. (IV-9)

Henceforth we shall consider all f c to be functions of j and t for JE J,

t=1, ... , T.

AAlFQr 0 F , 1et K(*) betheoone of directions hsuch that 0+ OhcEF+ for all

sufficiently small nonnegative values of 9. For F F and h e(*), (IV-8) becomes

T A
PýjF,hj = ZI DT( ,J,t) hajt). (IV-1O)

We now state the analogs of Theorems 1 and 2 of Chapter VI for the class of plans

A(m). Let 9T be the nonnegative orthant in Euclidean T space.

THEOREM 1. Suppose b is concave and has a bounded nonnegatIve derivative b'.

A+
Then i* is T-optimal within +(m) if and only if there exists (;.(1), ... , )(r)) E

such that

6T(O*,J,t) X(t) if 0*(J,t) > 0,

< (t) if 0*0,t) = 0, for j c J, t =1, ... T.

.1

Proof. The proofs of sufficiency and necessity are completely parallel to the ones

A
given for the proof of Theorem 1 of Chapter VI provided one uses D (*, jt) in place

of DT(0*,y,t) and (TV-10) for the computation of P.

Let Ejt denote expectation conditioned on the target being in p () at time t, and

define

it
1Ptj f P p Pt (Y)dY for j c J, t 1 , ., T.,

Then for the case of an exponential detection function, one can show that I
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A
for any search plan 0 E $(m), j c J, and t = 1, .... T. As above we think of the

sweep width function W and the allocation functions 0 4 P as being functions of 0, t)

forj•J, t=1, ... , T. Sothat if we write W(Xs) or 40*(XB,s) we understand

this to meaL the value of W or 0*(., s) for the cell In which X. falls.

THEOREM 2. Suppose the detection function is exponential and W is bounded.
A+

Then * is T-optimal within * (m), if and only if there exists (X(1), .. , X(T)) 4E +

such thatforj=1, ... , J, t=l, ... , T,

I [eLp(- jW'X 5 ) 0*(X a))] 0 wdeW0)) (,t) X(t)if Ut)> 0 ,
(rV-12)

< x(t) if **0,t) o0.

Proof. The proof follows that given for Theorem 2 of Chapter VI using the

necessary conditions in Corollary 2. 1.6 of reference [h ].
AA

For I = 1, ... , let ý IT be the member of 4(m) Identified with OZT In the manner

discussed at the beginning of this section.

A A
THEOREM 3. The sequence k 01T' .2T... " lhas a convergent subsequence

AT Aand the limit ^0* of this convergent subsequence Is T-optimal within *(m) for the

Monte Carlo sample of target paths. In addition,

1 lilm PTIT] = PTIP*]. (IV-13)

I AProo_.f. Since each OIT satisfies

1 AOJ l0t)=r~) for t= 1, T.. T

J=1 '
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t A

It follows that jlT0,t)<m(t)/A0) for t= 1, ... ,T, jcJ. Hence for each j and t

j[+ • I there is a sequence (Ik}=1, 2,... such that l!k . *lkT~t t) exists.

Because the number of grid cells Is countable, one can choose a Cantor diagonal
sequence to obtain a subsequence I i = 1, 2, suchthatlim 1  TO't

E I
. exists for all j and t. Let

SI +*(j,t) =lm-c I lin 0 )

I Since each ý ZiT c ý(m), ý* e *(m). By the Lebesgue dominated convergence

theorem and the fact that PT[(Ž+I)T] > PT[$IT1, for I = 1, ... , equation (V-o13)

must hold.

I We now show that ý* is T-optimal within i(m). For the nth sample path define

w* = w exp Won) *0, ,).

Then w* is the probability that the target follows the nth sample paw. qand is not de-

A
tected using the plan *. Define

iso,(,t) = 1 w* exp(W0) *•*,t)) for t= 1, .. T, j= 1,. T.
{n:jt )

Observe that

g+,(.t) = Ejt[exp(- W(Xs) ý*(X ) '1 U,

provided we understand { Xt, t = 1, ... , T) to be the Monte Carlo sample of target

paths. Another way to view g ,0, t) is as a Monte Carlo estimate of the expectation

Iii of the right-hand side of the above equation where ( Xt, t = 1, ... , T) is the under-

j lying motion process from which our sample paths are drawn. We shall take the
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former point of view for this proof.

Let K(t)= .1 *Ot)am g.(., t) =ý*(.t)/K(t). We claln that** satisfies

S~conditions (IV-12) of Theorem 2, 1. e., there to a vector (x (1), . . T••)) of non-I

negative numbers such that

go(, ,t) w0J) exp (-W0) (0, t)) = (t) if N0,t > 0,

(IV-14)
< A M Iff ý*O,t)=0, J=1,.., J, t=1,.., T.

I
We prove this claim by supposing that for some t, condition (IV-14) does not hold,

That is $* (. t) fanls to satisfy the necessary conditions of Corollary 2. 1. 6 of reference C

[h I for 0*(., t) to maximize probability of detection for cost m(t) for the
stationary target problem with target probability distribution g , t) and

exponential detection function with sweep width WO) for the i cell. Thus one can -

find an allocation f* such that

-JJ

E AO) f*) = (t),
J=1

I

and

E g$.(O,t) I-exp(-Wd) f*O > gs.o,t) I.-exp(-WO) N',t.
,j- J =1

This implies that

A J . 0t x(w) *1. (v•
1-PT(4 *I = ~ gzJ*O't) exp(-WO) 0*(, t)) > 7 . $ *0t) exp=(-W 0) (*d)) (TV-16)

Let _ indicate the operation which maps a plan 4, into the plan 1(0) which results

from performing one pass of the algorithm. Then the nondecreasing nature of the

12
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detection probability resulting from each of the stages forming a single pass coin-

blued with (IV-15) implies

yzsi "~k q-
, ~ ~~PT[I(4 *)] PT[@*]. I-)

Clearly 9 is a oontlnuous operator iJ the supremum norm so that

A A

tim ( T [1.

However, since PT is continuous and (1V-13) holds,

A A

P T[9(0*)] = llm-o PT[Z(O IlT)]

= lira P T[•i -.00 (0li+)T

A

= PTI4 *I,

which contradicts (IV-1P,). Thus we have shown that .* satisfies conditions (lV- 12) and

by Theorem 2, 1s* t T-optimal w (m) for the Monte Carlo sarnple of target paths.
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= CHAPTER V.

ALGORITHMS FOR OTHER SEARCH PROBLEMS :

in this chapter we outline algorithms which can be used to solve a number of

search problems related to the main one considered in this report. These algorithms

are based on necessary and sufficient conditions for optimality which are related to

the ones obtained in Chapter IV.

In the first section we outline an algorithm which oan be used to calculate plans

that maximize probability of detecting the target by time T when the detection function

is not exponential. A method of calculating plans which minimize mean time to

complete a search for a moving target is presented in the second section. The th/rd

section out4ines an algorithm for finding optimal survivor search plans. The final

section gives a method for maximizing probability of detection when there is no constr-aint

on the rate at which effort may be applied but only on the total effort available for time

1 too.

None of the algorithms in this chapter have been programmed or tested. Thus,

the algorithms should be viewed as approaches to solving the problems and not

necessarily as answers.

Optimal Plans for Non-Exponential Detection Functions

In this se&.,.jn, we consider the basic search problem stated in the first section

, of Chapter I when the exponential detection function is replaced by a more general

i -127-

" • qi l ld ml~~nl la ... :• , ... . •:---•=: :' I " i $I ,in i Ip~li llulm ll~m~imi r ll nl lli li~~in



regular detection function b. A regular detection function b: [0,0 )-e[0, 1] has a positive,

continuousand strictly decreasing derivative b'. As in the third section of Chapter IV,

we consider 0 to be a search density on the plane so that the probability of detection

P in (1-3) of the problem statement in Chapter I becomes[b( TJ
PT(IO = E [b O(X 't))" (V-i)

As in Chapter IV we shall restrict ourselves to allocations which are constant
A

over each cell of our search grid. That is, we consider only plans in the class *(m)

defined in Chapter IV. Recall that this restriction is not equivalent to assuming that

the target is moving in discrete space. The target motion process X = { Xt, J=1 .... , T}

may take place in the discrete space composed of the grid cells or it may take place

in the underlying space, the plane, over which the grid has been imposed. In either

case

pt) Pr{X is in cell J} for j c J, t = 1, ... , T.
t t

As in Chapter IV, let Ejt denote ecpectation conditioned on the target being in

cel! j at time T. The necessary and sufficient conditions of Theorem I of Chapter VI

for a plan 0* c *(m) to be T-optimal within *(m) become

S( T 1
E jt bI bt E (Xs, ) pt) X-M if 0*(J,t) > 0

-X (t) if 0*(,t) < 0, j E J, t = 1, ... ,

for some vector (A (1), .... . (T)) of nonnegative numbers.
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F]i II

IDescription of the alorithm. As iu Chapter IV we assume that the target

I motion process Xt. t 1, Tj to approximated by a large but finite number of

sample paths drawn from this process in a Monte Carlo fashion. That is, we suppose

that we are given N sample paths drawn from the process TXt; t=l, ... T}. The

1 nth sample path is assumed to have the form

' ln n n•
I (xI, x2 .... I ), Wn,

where x is the position of the target at time s in the nth sample path and w is the
s n

sample probability that the nth sample path represents the target's actual path

(usually w = 1/N).

Conceptually the first act of the optimizer is to convert the sample paths into

th
sequences of cell numbers. Thus the n sample path becomes

n n n
0j1 , ... j ), wn,

n n
where J Is the index of the cell into which X falls.

Let

z - total effort density that accumulates on path a

T n (VI

= E *(J t) forn = 1, N.

Then

], T
Et I( •(Xt't)) Pt ) {n) w b'(z

t=1{ n:j t=J)

1I
K'

,• • .... • ••i•--'- ....... ;-l•=i•[•• F -129' i- .... i i
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The algorithm pro'0eeds as follows: ij
1. LetE >0.

2. Let 0 be an initial allocation and compute z for n 1, ... , N.
0 n

3. Set I - 0.

4. Sett--1.

5. Find the allocation f: J-'[O, W] and nonnegative number X (t) such that

Ij/E (J) A(J) = mr(t) for J t J and

n Ol t)+f(0)) = .(t) liff(j) > O0
njl w (V-5)

<(t) if f ) = 0.

6. Set

(j 0lOT+t-I O, s) for a tIfT+t =rfor je J.

AD) for s t

7. Set t - t+1.

8. Ift<T, gotostep 5.

9. If t > T, set l1 +1 and compute d =PT[T- PTO(I)T] •

10. If d c atop; •lT is the answer.

11. Ifd > E, sett=l and go to step 5.

The difficult part of this algorithm involves finding f and A (t) in step 6. One

way to proceed is to choose a value for A (t) and then solve for f() for j c J in (V-5).

Since b' is monotone decreasing, this is a straightforward numerical problem. One

then computes fJ ( jfO). If this sum is larger than m(t), then one should increase the

value of A (t). Correspondingly if the sum is less than m(t), A (t) should be lowered.
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Since the sum is a monotone function of X (t), a straightforward numerical search

procedure can be used to find the value of X M such that E iJ(J) re(t).

The disadvantage of the above algorithm is that it requires a much larger

number of calculations than the algorithm in Chapter IV for an exponential detection

function.

Minimizing Mean Time to Complete a Search

In this section we outline an algorithm for computing plans which minimize

mean time to complete a search when the target moves according to a discrete

time and space finite Markov chain and the detection function is exponential as in

Chapter II.

The search has a cutoff time T so that the search will proceed until the target

is detected or time T is reached. Thus, if the target is not found by the end of time

T, the search will stop. We say the search is comeleted if either the target is found

or the search has been stopped after time T. The object is to minimize the mean time

to complete the search.

Let p T[01 be the mean time to complete the search using plan 0. For the remaindert of this chapter, we consider * to be an allocation of effort as described in Chapter I. Deflnue

Polo] =0 and let Pt[f] be the probability of detection by time t using plan *. Then

T
E= (1-PtL¢])T t-ot

I=1 + E E exp -• WIXa (Xs, s)/A(Xs)).
ti1 8=1

Our problem is to find 0* E +(m) such that

'T
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Following the argument in Chapter VI, one may calculate that the Gateaux differential

of /Tat 4' in the direction h is

T [T tf
[ 4,h] =-Eb E E exp - W(X)A(, pu)WO)h(ju)/AO).

ju \ z 5u=l Je J t=uI

Thus a necessary and sufficient condition for 0* e 4(m) to satisfy (V-6) is that

there exist nonnegative numbers X (t) for t = 1, ... , T such that

T F t W s ,)
l. E xp z W(X *(X /(X J) WAU) A X(u) if 0 *(J,u ) > 0, (V-7)

t=u 8=1< X(u) if *U, u) 0.

For j o J, t= 1.... T, and search plans 4, define

SJU(t, ) Eju xp L AW(X s)4(Xs s)/A(Xsa PU 0) for u < t.
0=1
B#u

Equation (V-7) may be written as

z a(t, WO) exp (-W(J)4*Uu)/Ao)) = X(u) for 4'*(J,u) > 0,t ffi ju A O )

L X (u) for 4*0,u) =0.

Define R and T as in the third section of Chapter II. Recall that

RO,t, 4) = Probability the target reaches cell j at time t and is not
detected by the effort at times s = 1, .... t-1 under plan 4,

and that T is the transition function for the process. Assume that 1 gives the

initial distribution of the process at time 1 and that pt 0) = 1 for all t > 1 and j E J.

Define

VU,t, s, 0) = Probability that given the target starts in cell J at time t it will not
be detected by the effort at times u= t + 1, .... s, under plan 4.
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It follows that for any plan 0, j 4 J, u =1, ... , T, and t >u, that

]1Aju(t, ) = R(J,u, 0) VJ,u,t, 0).

We now describe the algorithm:

(1) (a) Set I = 0, 0 0(,t) 0 for J c J, t 1, ... , T,0I
and ;TA O -T.

(b) Choose E > 0 and compute R(. , , 00).

(2) Setu--T.

(3) Compute

Au(t, = R(Ju,$0) V(Ju,t, 0) forJc J, t=u, .... T.
ju j RJu~ 1  oi

(4) Find f: {1, . }--[0, oI such that X f(J) =re(u) and
jEJ

, ) wew(J)f(j)/AU) X(u) for f(J) > 0,

X< (u) for fJ) 0.

(5) Set

(j0, s) for s # u,

f(J) for s u.

(6) Ifu 1, set - 1+1 and go to step (9).

(7) Compute

VO,u-1,t,l) Z T +'r 1 (,k) exp ( -W(k) @1 + 1(ku)/A W) V(k,u,t, *)1+ ke J 1

for J4J, t u, ... , T.
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(8) Set u u-1, 1= 1+1 and go to step (3).
T

(9) Compute R(., * ) and 1, T[0 I = I + ; Z Rt, t, *1) 0 -W()*I(j. t)/Ae).
t=1 J( J

(I0) Compute d )A lT[(0 1];A T[1/.•J

(11) Iffd > , go to step (2).

t12) If d < E, stop; *Iis the answer.

Note that step (4) is equivalent to finding the optimal allocation of m(t) effort

for a density function d given by

T
dO) E A (t,*) forjc J.

t=u J

The algorithm in Example 2. 2. 8 of reference hI will find such an f*.

Optimal Allocation for the Survivor Search Problem

In this section we consider a discrete time version of the survivor search

problem addressed in reference [t I. The target is stationary with distribution function

p where

pj) = Pr{ target in cell J} for JE J.

The target has a stochastic lifetime whose distribution may depend on the target's

location. In particular, we assume that

( j, t) Pr{target dies at the end of time tI target is in cell J}

forJc J, t =0, 1,....
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Note that Zj j (J, 0) is the probability that the target dies before the search begins.
je J

We shall assume thRt the target's lifetime is bounded by some time T so that

T
E (pj,t) = 1 for j c J.

t=O

Let € be a search plan. Then, the probability 5 (0] of finding the target alive

with plar, 4 is

ST 0 = M p(j) 2 00(j,t) ) -exp 2- A1 *Odu
jE J t---O

Note, we follow the convention that E• 0 = 0. The survivor search problem is

to find E* E 4,(m) such that

S ir*] = max{ST[10:0 C J (.)}. (VI
T TV-

Following the argument in reference [t ) one can show that a necessary and

sufficient condition for 0* E *(m) to be an optimal survivor search plan is that there

exist nonnegative numbers A (t) for t =1 ..1, T such that

T WO t
pO) r ;Ot) exp - T 0 *0U = X(S) if I,*(,U) > 0,

ts Ad) x A) u~l < (s) if 0*(J,u) = 0.

For any search plan 4 define

I t
U(J,t,4) exp Y91- 0 0,J,u) for j e J, t =1, ... , T.

Ad0) )
-15u=-
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Now, we can write (V-10) as

'I p)WO) T

z PO-t) UOjt.*) = (s) if *0,s ) > 0, (V-Il)
A_) •,(s) if *0, s) = 0.

For any plan *, define

U -t.zP AU) *u= Ju)

u~s

UO. t, ') exp 00 .Os)) forjeJ, a<t<T.

Then conditions (V-11) can be written as

Ar TP 0, t) Us)t 0 e WO 0 ) A(s) if **JS) > 0,
t=s <A.s) if 0 *0 ,s) 0.

The following gives a description of an algorithm for calculating optimal survivor

search plans:

(1) Choose E > 0 and set l = 0.

(2) Set 00(Jt) = 0 for j 4 J, t = 1, .... , T.

(3) Set U ,t,tP 0 ) lforj e J, t1, ... , T.

(4) Set s = T.

ts) Compute

0U(J,t,,) UO, t,40) exp AO) I Os)) for j c J, t=s, ... , T.

-136-



SII

(6) Solve for f: J-j 0, c) such that M~c =0m(t) and

pOj)WO) T(Jt,* 1 )Jexp WO) fu
AU) Z 0 AU) f) = x(s)iff(J) > 0,

(< X (a) if f(J) =0.

(7) set

{ P/(J,t) for t~s

/+1(J,t) = for j c J.
fo) for t s

(8) If s = 1, go to step (11), otherwise got to step (9).

(9) Compute

U0,t,' U t(Jt, 0 \ exp-A) 0+0 /s) forJEJ, ts,..., T.

(10) Set s = s-1, I =1+1, and go to step (5).

(11) Set I =1+1 and computed t[ T I

(12) Ifd > c go to step (4).

(13) If d < e stop; 4 is the answer.

Observe that Ej. JPO) Z •Tt. W j, t) U U. t. ýP)] =Tt
jtj ~ ~ t• i= J1J Pa) (P'(J't)U0,t )

is the probability that the target dies in the interval is, T] before being detected by

plan 0. Step (6) of the algorithm finds the allocation of effort for time s which minimizes

this probability given that the allocation at all times other than s is already specified.

Observe that for any plan 4

T
1 -Z =1 2 : pU) (P(j,t) U(J,t, 0). (V-1

t=O jE J
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The optimization procedure first reallooates effort at time T to minimize the t - T

term in tne above sum. Then it reallocates the effort at T-1 to minimize the sum

of the t = T-1 and T terms. For time s it reallocates the effort for that time to

minimize the sum of the t = s to t = T terms tn (V-12). Thus, STil[ 1+] B> Till] for

I = 0, 1,.

Notice that finding the iolution f in step (6) is equivalent to finding the allocation

of rm(s) effort which maximizes the probability of detecting a stationary target with

defective location distribution 6 given by

T
6 0) •- p) - p0,t) U(J,t, 0) for jcJ,

tfs

and exponential detection function. This allocation may be performed by the algorithm

given in Example 2.2.8 of reference [h].

One can show that the above algorithm converges by using an argument similar

to the one given in the third section of Chapter 1il.

Allocating the Total Effort Available

For the other search problems considered in this report we have assumed that

search effort becomes available at the rate m(t) for t = 1, ... , T. By contrast, in

this section we assume that there is a total amount M of effort which can be applied at

any rate the planner wishes. With the exception of having the constraint on total effort

rather than on the rate at which effort can be applied, we return to the basic search

problem described in Chapter I.

This type of problem occurs when there is only one aircraft flight available to

search for a submarine in some interval t = 1, ... , T of time and the search planner

wishes to select the best time to cearch. Solving this problem is equivalent to solving T
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stationary target problems. One simply computes the target's distribution at time t

given that no search has been applied and finds the optimal allocation of M units of

effort to that distribution for t = 1, ... , T. The planner then chooses the time t*

which yields the highest probability of detection and follows the optimal allocation for

that time.

A more interesting problem arises when one is not required ik allocate all of

his effort during a single time period. In this case one can show that a necessary

and sufficient condition for a plan 0*, such that Zj.. Z T*(j t) = M, to maximize

the probability of detection by time T within the class of plans which allocate M units

of effort is the existence of a X > 0 such that for jE J, t=1, ... , T

Ejtexp - WO) 1 0*(Xs S) pt WO)- exp -Ot = X if *(j,t) >0,
AU) sA t AA) A)

<X if 0*U,t) =0.

For a search plan 0 let

gr(j,t) = Ejt [ex (W) 1 (Xs S))] p fort 1, ... , T, andjE J.

The following is a proposed algorithm for solving the above problem:

(1) Make an initial guess 00 for the search plan and choose E 1 2 > 0.
02

(2) Choose X > 0 and set I = 0 and k =0.
0.

(3) Fort=, ..1, T do steps (4) - (6).

(4) Compute (, t) and solve the following equation for faU):
01

z O't) W)-•-exp J) f) j E J.

BEST AVILABSLE COPY
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(5) Let f() =max{ O, f(j)} for j c J and set

i010(,ss) for sat

f+(j) for s--t.

(6) Set l=I+ 1.

(7) If l > 0, and max { 0 J 0(t)-01_T(J, t)I } -E < 1 go to step (9).
Je J, t=1,... T

(8) Otherwise go to step (3).
T

(9) Calculate CEOI= 1Z 1 (j,t).
Je J t=1

(10) If ICIOi-MI < C2 stop; is the answer.

(11) Otherwise set k = k+l and choose X k to be larger than Ak-1 if

CIO I > M and to be smaller than Xk-1 if C[4I] < M.

P. In steps (3) - (8) the algorithm is recursively calculating an allocation 0 which

satisfies (V-13) for X = . Once this is done, at least approximately, the algorithm
k*

checks the total effort C[I] associated with this allocation. If the total effort is too

large (small), then X kI' the next guess for X, is made larger (smaller) than A k"

Because C[IO is a monotone decreasing function of X, this will cause the C(IO) resulting

from A k+1 to be smaller (larger) than that obtained from X k. Thus steps (9) - (11)

should really be thought of as performing a binary search to obtain a value of A such

that CI) =M.
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CHAPTER VI

GENERAL NECESSARY AND SUFFICIENT CONDITIONS
FOR MOVING TARGET PROBLEMS

In this chapter* we find necessary and sufficient conditions for a search plan

to nmximize the probability of detecting a moving target by time T under constraints

on the rate at which search effort may be applied. These conditions apply to a very

wide variety of moving target problems in continuous or discrete time and continous

or discrete space. Many previous results concecning necessary and sufficient conditions

for moving target problems appear as special cases of the results obtained here. In

particular our results include the necessary conditions obtained by Hellman, reference [u],

for diffusion processes and by Saretsalo, reference iv], for continuous time and space

Markov processes, and they extend those results by showing that the conditions are also

sufficient. The results of Stone, reference [w], and Persiheimo, reference [x), for

continuous time generalized conditionally deterministic motion are special cases of the

results in this paper as well as those of Brown, reference [b), for discrete time and

space target motion.

The results proved in this thapter are not restricted to problems in which targets

' i move according to a Markov process or a mixture of Markov processes. The results

apply to any process for which the expectation defining the function DT in (VI-4) makes

sense. In the case where the detection function is exponential, calculation of DT isiT

equivalent to being able to calculate, for each time t and point y in the search space,

j * This chapter is based on reference [e].
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the probability (density) that the target passes through point y at time t and is not

detected by the search effort over time (0, T).

In the case of a discrete time target motion process and an exponential detection

function, the necessary and sufficient conditions have the simple intuitive interpretation

given in the basic condition of Chapter I. This condition forms the basis for the

algorithms in Chapters I1 and IV.

In the first section of this chapter we state the generalized version of the optimal

search problem of Chapter I that we are considering here. The statement of the

problem and the theorems are given in terms of a discrete time and continuous space

target motion model. Modifications required to apply the results to discrete space or

continuous time are noted after the results are stated. A discrete time model is used

because it is most amenable to numerical calculation and because discrete time allows

us to present proofs that are considerably simpler than those required for continuous

time. A continuous space is chosen for the basic presentation because it illustrates that

the results are not simply applications of the Kuhn-Tucker theorem. In addition, the

discrete-space results are usually transparent once the continuous-space results have

been obtained.

In Theorem 1 of the second section we prove that conditions (IV-6), stated below,

are necessary and sufficient for the optimality of a 3earch plan in discrete time and

continuous space when the detection function is concave. In the case of continuous

time, we observe that the necessary conditions (VI-6) are true but their proof is not a

simple extension of the one given in Theorem 1. Instead the reader is referred to the

proof of Theorem 5.2 of reference [W] which m-y easily be applied to proving this result.

However, the proof in reference [wY is very technical involving a demonstration of the
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existence of a measurable selection from a function space. This difficulty ts not

present in discrete time. In Theorem 1' of the second section we present a unified

statement of the necessary and sufficient conditions which applies to a target motion

process with any combination of discrete or continuous space and time.

The third section considers the special case of a discrete time target motion

process and an exponential detection function. For this case we give a simple proof of

the necessity result which relies only on the necessary conditions for an optimal search

plan for a stationary target. In this case, the necessary and sufficient conditions have

the simple intuitive interpretation given in the basic condition of Chapter 1; namely,

at each time t, the optimal plan allocates its effort for that time period so as to

maximize the probability of detecting a stationary target with location distribution equal

to the posterior target location distribution given failure to detect at all times other

than t, i. e. , at all times before and after time t. For discrete time and space target

4-- motion, Washburn, reference [y), has shown that the basic condition is necessary but

not sufficient when the searcher obtains independent glimpses at the target at each time

period, but the detection function during a single time period is not exponential.

In order to avoid confusion, the reader should note that we have adopted a

different detection model from that used by Washburn. In the discussion in the first

section below, the reader will see that we have assumed a constant detection function b

over all time periods and that this function relates the total effort which falls on the

target during the search to the probability of detecting the target. Only when b is an

exponential deLecti•u fui4tlon does one have independent glimpses at the target at each

time period. Thus, the model assumed by Washburn coincides with the one used in this

S I report only when the detection function is exponential.
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Problem Statement

Leto{Xt; t = 0, 1, ... , T} be a discrete time stochastic process where XXt

'1 takes values in Euclidean n-space. Y, and T is a positive integer. The random

variable Xt represents the target's position at time t. We assume that (X0 , X1 , ... , XT)

has a joint density function p defined on YT Let pt be the density of the marginal

distribution of Xt for t = 0, 1, ... , T.

Let '(-,t) be the allocation of search density at time t for t - 0, 1, ... , T.

That is, 0 (y, t) is the effort density applied to point y at time t under plan We. We

assume that 0 is a member of the space F of real-valued Borel functions f defined

onYx {o, 1...., T} suchthat

f yf(y,t) Idy < fort=0, 1, ... , T,
Tfifil R ess sup If(V,t 1 < -.

Then F is a linear space with norm ii f Ii for fc F. Let F= {fE F: f> 0}, and let

m(t) > 0 be the amount of effort which Is available at time t for t = 0, 1, ... , T. Define

{(m) O •EF+: fyO(y, t)dy=m(t)fort=0, 1 , 2, T}.

Let X(L," ) denote a sample path of the process X. If the target follows this

path and we allocate search effort according to the plan 4, thenIT
b ( 0 (X(W, s), )): ~s=O",

is the probability of detecting the target by time T. The function b is called a detection

function. It relates the accumulated search density along the target's path to probability

* In distinction to previous chapters, we take the initial time to be 0. This is to

facilitate a combined statement of continuous and discrete time results in Theorem 1'.
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of detection. Letting E indicate expectation over sample paths, we have that the

overali probability of detection by time T Is

PT14' FI ) ]EE[b E XW

in the sequel we shall usualiy not indicate the dependence of X on w.

The optimal search problem under consideration is to find 4'*c 4'(m) such that

PT[4*1= MAX{IPT[0I4,E * (M)}. (V1-4,

A plan * *E 'k' (in) that satisfies (VJ-2) is called T-optimal within *(in).

Necessary and Sufficient Conditions

In this section we find necessary and sufficient conditions for a plan 4'*to be

T-optiinal within 'l'(i) when the detection function b is concave. The conditions involve

the Gateaux differential of P Twhich we will now define and calculate under the

assumption that for some finite K >0. the derivative b' of b satisfies 0 < b'(z) < IC

for z > 0.

Gateaux differential of PT. Let 4,hE F. If

P14,b h) .l (PTI'+,E h) - P["

exists, then Pý(4,, h) is the Gateaux differential of PT at 4,in the direction b.

Far 04b F4, let C(O,) be the cone of directions h such that 4, + Oh EF+ for all

sufficiently small nonnegative values of 0. Now for 4,e F and he C(O,),

P04, h] limnEt Z Ob~4(X s) + Eh(X 's)) -b( 1; (X.*
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Since the integrad is bounded by KI h I.we may invoke the domninated convergence

theorem to obtain

T )T
Pý P .h] =-E h' E X 8,Iss) E . lX.. t)

8=0VI---)

= E E b'( E(X s T h(Xtit) q

St=-0 8=0

Let Pt denote the marginal density for Xt, and let E denote expectation conditioned
+

onXt =y. Then for4 cF and he C),I T ()T
P.• 0 hl = Eo fy E yt [b' E0 O(XeSt ) h•.,t) pt•y)dy.

Note that we have expressed PV[0, * ] as a linear functional on C(0). Define

DT(0,yt) = Eyt Z' , (Xs Sa) pt(y) for cF , y c Y, t=0, 1, ... , T. (VI-4)
s=0

Then

T
Pý([0, h] = Z f yDTlOy't) h(y, t)dy forh c C() (VI-5;

t=o

Necessary and sufficient conditions. We now state and prove necessary and

sufficient conditions for T-optimality. Let (T be Euclidean T+1-space and 4?T+I
T+1 +

be the nonnegative orthant in &T+1"

THEOREM 1. Suppose that b is concave and that it has a bounded nonnegative

derivative, b'. Then 0* is T-optlmal within 4,(m) if and nly. if there exist
+

(A. (0), X.,) (T.)) c T such .that
T+1
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y, y, t) X (t) if 4 *(y, t) 0, (vi-6

_ X(t) if C*(y,t) 0 for a.e. yEY, t 0, 1 .... , T2.

Proof of sufficiency. The proof of sufficiency follows that of Theorem 8.4. 1 in

reference [h]. The essence of this argument is due to D. H. Wagner.

Observe that the concavity of b implies that P is a concave functional on F+
T

We now proceed to use an argument by contradiction. Suppose that 4*E qI,(m) satisfies

(VI-6) and that there is a E'qI,(m) such that PT[Z[] > PT

Since PT is concave we have for 0 < 0 < 1,

P T[* + 0(¢-O*)] - PT[* PT[(1-0)* + 0 - PT[0*

> (1-0)PrT 1** + OP -T P T

= 0(PT[T] - PT[01).

It follows that

Pr[4*, [*¢-1 _> PT[! M PT[ *0 > 0. (VI-7)

However, by equatioas (VI-5).and (VI-6) we have

T

f Y t •1 ( y,0t)[¢(yt)- *(y,0t)dy
t-- -0

'1'?

Sf fy: *(Y, t) >0,}DT(O*'Y' t)[ (y,'t)-O *(Y't)ldy ;

: f yD () (y t- * (y ), tl y=0,t)[ (y,:,*yJ ]

__ý *(y Q - 0,

L- 0 f Y(Bt)E (,OPY
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where the last equality follows from the fact that

f y (y. t) dy =f y *(y, t)dy = m (t) for t =0, .. ,T.

However (VI-8) contradicts (VI-7) and sufficiency is proved. ir n

Proof of necessity. Suppose 0* is optimal within *(m). Since b is increasing,

we observe that 0* is also optimal within the larger class obtained by replacing the

equality constraint by an inequality constraint in the definition of $(m) in (VI-1).

Since f f(y, t)dy < c for fe F* and t = 0,... T, we may define

T

L [ f) Tf - E y(t) IfYf(y, t)dy - m(t)] for fE F4 yec&Tlt=0

+
By Theorem 1 on page 217 of reference [z], there exists XE 4?T+I such that

LX[4*] = max4, F + L [101.

For ft F and he C(f), the Gateaux differential Lý [f, h] of L at f in the direction of

h exists and is a linuar functional of h. In particular by (VI-5)
T T

Lk if, h] = Z f yDTlfyt) h(yt)dy - I2 ?L (t) f yh(y, t)dy (VI-9)

t=o t=o

Following page 227 of reference [zJ, we observe that since L[ 4 *j = max F+L)[ ' 1 ,

we have for any Oc F ,

lim f-{L,[I*+E -(0-0*)J - LA[O*J} _ 0. (
-1

Thus
-

4-

L' f(*, 0-0*J< 0 for 4E F+. (VI- .
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•ctting w. e *, we obtain

0 L0 [b,44] -~L 4~ (VI-I1

while setting 24* yields

LX[ <*, <0. (VI-12

Equations (VI-9), (VI-11), and (VI-12) imply

T
2 fyJDw(0*y, t) - X(t)] 4*(y,t)dy 0, (VI-13,t=0

while equations (VI-10) and (VI-13) imply

T +
Z fy[DT(p*,y,t) - X(t)I i(y,t)dy_< 0 for all OEL , (VI-14

t=0

Equation (VI-14) implies that DTP(0*,y,t) < X(t) fora. e. yEY, t= 0, 1, ... , T, and

(VI-13) implies DT (*,y,t) =X(t) for a.e. yEY andt= 0, 1, ... , T such that

¢1* (y, t) > 0. The necessity of the conditions in (VI-6) follows, and the theorem is proved.

In the following paragraphs we discuss extensions and specializations of Theorem 1.

Discrete space - discrete time. Theorem 1 and the proof given above also hold

when the search space Y is discrete provided one interprets pt(y) in (VI-4) as the

probability that Xt = y.

Continuous time (sufficiency). The obvious -inalog of the sufficiency part of

Theorem 1 holds foc continuous time provided the target motion process {Xt; 0 <t < T}

has, 1'orel rneasurahlc sample paths, the conditional expectation T:t[b(f (X, s)ds] is

.. 1 defined, anrd we take

)• • I:t L, T(X pt(y) for 4ic F+, yc Y, t[0,T]. (VI-15[T
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.F'
The proof of this assertion parallels the sufficiency proof in Theorem 1. The Berel

measurability of the sample paths is needed to guarantee that the Integral f/T(XB, s)ds

is Aell defined.

Continuous time-continuous space (necessity). The corresponding necessity

result for continuous time Is rn-,re difficult to prove; Its proof is not an obvious

extension of the one given for Theorem 1. However, by paralleling the proof of

"theorem 5.2 in reference [j one may show that tb ,nudltions in (VI-6) are necessary

with DT defined as in (VI-1 5). In fact, that proof snows that for continuous space the

necessary result holds when the concavity assumption on b is dropped. The proof in

refererce [w] also allows one to add a constraint of the form 0 < 0 (y, t) < B for some

positive rumber B with a correswnnding change in the conditions in (VI-6).

Observe that when b(z) I - e, we have, for continuous time,

D0( 4;,yt) Eyt [exp T (Xs(Xs s)ds pt(y). (VI-16)

If {X; s > 0} is a Markov proesse, then one can show that

D+ D(0,y, t) fi ~xrl, 0, y.t, 0) R(y, t, T, 0) plx~dx, (VI-17)

where under plan ý, r(x, O, yt, W) is the probability density that at time t the target Is

blosted at y and is undetected given It was at x at tnme 0, and R(y, t, T, 0) is the

probability that if the target is at point y at time t it will be undetected in the interval (t, T].

.llecAus of 'he Markov nature of the process, r(x, 0, y, t, 0) R(y, t, T, 4) is the probability

denI:ty that a target starting at x at time 0 will pass through the point y at time t and

retrain undetected throughout [0, TI. The Integral on the right of (VI-17) averages over

the distribution of the target's p;,.,Itlrn at tinie 0 to oltain the probability density that
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the target passes through point y at time t and remains undetected throughout [0, T]. Now

IT
exp 0Xw.9,s)d51

is the probability of failing to detect the target by time T given it follows path W. Thus,

the right-hand side of (VI-16) is simply the probability density of the target passing

through point y at time t and failing to be detected by time T. From this observation

and the above discussion, equation (VI-17) follows.

Thus, Saretsalo's Theorem 5. 1 (reference [vj) and the theorem of Hellman

(reference [u]) are special cases of the necessity result obtained in this chapter. In

fact, the specialization to Markov processes given here is stronger than the result in

reference {v] in the sense that no assumptions concerning the continuity of the transition

function are required. In addition, we have proved sufficiency.

It also follows that the necessary and sufficient conditions obtained by Stone in

reference [w] and Persiheimo in reference bc I are a special case of the conditions found

in this chapter. In particular, one can show, in the notation of Stone (reference [wj) that

P ,I•1t V), W)

In J-1)(y), . P)

and

I 1T

I
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so that DT(0, y, t) = Ey[b'(fY0 (X, si)d pt(y) coincides with the definition of DT

- in Stone (reference [v4), and the conditions in that reference and in Persiheimo

(reference [x]) are a special case of conditions (VI-6) provided one makes the obvious

changes for the bound B on effort density which is allowed as a constraint by Stone

reference [w].

Continuous time-discrete space (necessity). The necessity part of Theorem I

also holds for a continuous time and discrete space motion process. Again the proof

is not a simple extension of the one given for Theorem 1, but one can parallel the proof

of Theorem 5.2 in reference [w) to obtain the result. However, In the case of discrete space,

the assumption of concavity for b is required in order to guarantee the necessity of

conditions (VI-6). The concavity is needed on page 464 of reference [u) where one

invokes a Lagrange multiplier result to guarantee the existence of A (t) to satisfy (5. 9)

at the bottom of that page. In the case of a discrete search space one must invoke a

result such as Corollary B. 1. 2 of reference (h) which requires the concavity of the

detection function b.

Unified statement of results. Most of the above results can be consolidated into

a single theorem statement provided we make the appropriate identifications for DT, .1
SPt and (0, TJ. Specifically, DT is given by MVI-4) when time is discrete and by (VI-15)

when time Is continuous; Pt is the probability density function for Xt when Y is Euclidean

n space, and pt(y) a Pr{Xt - y} when Y is a diucrete space. For continuous time

4

F, F ,(m), and PT are defined as in the first section but with integrals replacing

summation. In discrete time we understand [0, T {0, 1, ... , T} while in continuous

time 10, T1 has the usual meaning.
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THEOREM 1'. Suppose b is concave and that it has a bounded nonnegativ(&

derivative b'. Assume that the sample paths of {X ; 0 < t < T} are Borel measurable

and that DT is well defined for (y, t) such that pt(y) > 0. Then ¢* is T-optimal within

4, (in) if and only if there exists X :[O, T]-- [0, c) such that

D (*, y,t) (t) if 4*(y, t) > 0, (VI-1
< X (t) if *(y,t)=0 fora. e. (y,t) E Yx[0, T].

In the case where the search space is the necessity of conditions (VI-18)

remains true when the concavity assumption on b is dropped. In discrete time, the

sample paths will always be Borel measurable, and DT will be well defined for (y, t)

such that p t(y) > 0.

The Special Case of an Exponential Detection Function

When the detection function is exponential, we may prove the necessity of the

conditions in (VI-6) in an elementary manner which requires the use of only the

necessary conditions for an optimal stationary target searuh. The use of the exponen-

tial detection function also allows us to consider the possibility that the detection

capability of the search sensor varies over the search space. Specifically we shall

assume that for each point y E Y, there is a number W(y) which characterizes the

detection performance of the sensor in the neighborhood of y in the sense that if the

target is located at y and z effort density is placed there, then 1 - exp(-W(y)z) is the

probability of detecting the target. Classically W(y) is called the sweep width of the

-•;r•rsr when operating in the neighborhood of y (where 1/z has dimensions of distance).
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For this case

T+
PT[0] 1 1- E exp E WlX O(Xss) for Oe F4, (VI-19i)

B0

and DT, the kernel of the linear functional Pý[(.. ], becomes

DT(*,yt) = Eyt exp Z- W(Xs) (Xa s)) pt(Y) W(Y)

for *F, yEY, t=0, 1,..., T.

THEOREM 2. Suppose the detection function is expmential and W is bounded.

Then 0b* is T-optimal within *(m), if and only if there exists (X (0), (T)) T+

such that fort=, .. , T and for a.e. y c Y,

Eyt exp - WIX 9 *(Xs, a) pt(y) W( y)e- *(yt) = X(t) if p*(y,t) > 0 (VI-20)

x M,(t if 0 *(y, t) = 0.

Proof. Since PT as defined in (VI-19) is a concave functional, the sufficiency

proof for Theorem 1 applies here also.

To prove the necessity part of the theorem, let

gt a E~ [ exp lE~~ W(X 9) 0 (Xs 5)) ]pt(.y) for ye Y, tin0, 1.,.. T,
and

K K(t) f fygt (Y)dy for t 0 , 1,, T.

Suppose that for some t, equation (VI-20) fails to hold r, a set of positive measure
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in Y. Dividing g by K(t) to obtain a probability density gt' we observe that . t)

fails to satisfy the necessary conditions of Corollary 2. 1. 7 of reference [h] for

S*(. ,t) to maximize probability of detection for cost m(t) for a stationary target with

probability density gt" Thus 4*(-, t) is not optimal for cost m(t) for this stationary

j. target problem.

For nonnegative Borel measurable functions f defined on Y, lot Q(fj be the

probability of detecting a stationary target with location distribution gt and effort

allocation f, I.e.

SQ~f] f fy gt(y) (1-e-W(Y)f(YI)dy.

Since *.t) not optimal for cost r(t), we may find an f > 0 such that fyf*(y)dy = re(t)

and Q~f* > Q a•nd wd t)]. Observe that

SI -PT[ q,*1 " f y g't0) exp(-W(y) *(y, t))dy

a I - K(t) Q1 *(.,t)

> I -- K(t) Q[f*].

4 •*(y, s) for a t

Sf*(y) for s -t,

we have 0 c , (m) and P, 0 j > PT[*] which contradicts the assumption that O*isI

S"nT-optimal within *(m). Thus equation (VI°20) must hodadTerm2 im proved.

hodndTheorem 2i rvd

SI
t I



From the definition of gt(y) and Kit), one can see that gt gt/K(t) is simply

the probability density for the target's location at time t given that it was undetected

by the search applied at all times other than t. Let y (t) = A(t)/K(t) for t 0, 1, .... T.

Then conditions (VI-20) become

gt(y) W(y)e-W(y)O*(y9t) = M(t) if **(y,t) > 0,

< M (t) if 0*(y,t) = 0,

which are precisely the necessary and sufficient conditions for 0 *(,t) to be an

optimal allocation of effort for a stationary target with probability density g Thus

the optimal moving target plan can be characterized in terms of optimal atationary

target plans. That is at each time t 0, 1, ... , T, the optimal plan ;* allocates

the effort available at time t so that •*(.,t) maximizes the probability of detecting

stationary target with probability density gt'

II
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